Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10998
DC FieldValueLanguage
dc.date.accessioned2018-03-06T08:39:38Zen
dc.date.available2018-03-06T08:39:38Zen
dc.date.issued2017-11-27en
dc.identifier.urihttp://hdl.handle.net/2122/10998en
dc.description.abstractThe Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by 60 years of unrest. Assessing such renewal activity is a challenging task because hydrothermal interactions with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the shallow Solfatara hydrothermal system by performing the first 3-D, high-resolution, electrical resistivity tomography of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance measurements performed on an area of ~0.68 km2. The proposed interpretation of the multiphase hydrothermal structures is based on the resistivity model, a high-resolution infrared surface temperature image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil cation exchange capacity and pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated reservoir at 60mdepth that feeds the Bocca Grande fumarole through a ~10mthick channel. In addition, the resistivity model reveals a channel-like conductive structure where the liquid produced by steam condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model delineates the emplacement of the main geological structures: Mount Olibano, Solfatara cryptodome, and tephra deposits. It also reveals the anatomy of the hydrothermal system, especially two liquid-dominated plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Research: Solid Earthen
dc.relation.ispartofseries/122 (2017)en
dc.subject3-D gas-dominated reservoir feeds the Bocca Grande fumarole at 164 degrees Celsius through a ~10 m thicken
dc.subjectThe Fangaia mud pool and Pisciarelli fumarole are both conductive liquid-dominated plumeen
dc.titleThree-Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for the Multiphase Flow Structure of the Shallow Hydrothermal Systemen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber8749–8768en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1002/2017JB014389en
dc.relation.referencesChiodini, G., Vandemeulebrouck, J., Caliro, S., D’Auria, L., De Martino, P., Mangiacapra, A., & Petrillo, Z. (2015). Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth and Planetary Science Letters, 414, 58–67. https://doi.org/ 10.1016/j.epsl.2015.01.012 D’Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., … Isaia, R. (1999). The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. Journal of Volcanology and Geothermal Research, 91(2–4), 247–268. https://doi.org/10.1016/S0377-0273(99)00038-4 De Landro, G., Serlenga, V., Russo, G., Amoroso, O., Festa, G., Bruno, P. P., … Zollo, A. (2017). 3D ultra-high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): New insights on deep hydrothermal fluid circulation processes. Scientific Reports, 7(1), 3,412. https://doi.org/10.1038/s41598-017-03604-0 De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., & Belkin, H. E. (2001). New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology, 73(1–3), 47–65. https://doi.org/10.1007/s007100170010 Del Gaudio, C., Aquino, I., Ricciardi, G. P., Ricco, C., & Scandone, R. (2010). Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. Journal of Volcanology and Geothermal Research, 195(1), 48–56. https://doi.org/10.1016/j. jvolgeores.2010.05.014 Doetsch, J., Linde, N., Pessognelli, M., Green, A. G., & Günther, T. (2012). Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization. Journal of Applied Geophysics, 78, 68–76. https://doi.org/10.1016/j.jappgeo.2011.04.008 Ducci, D., & Tranfaglia, G. (2005). L’impatto dei cambiamenti climatici sulle risorse idriche sotterranee in Campania. Geologi, 1–4, 13–21. Dvorak, J. J., & Gasparini, P. (1991). History of earthquakes and vertical ground movement in Campi Flegrei caldera, southern Italy: Comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968. Journal of Volcanology and Geothermal Research, 48(1–2), 77–92. https://doi.org/10.1016/0377-0273(91)90034-W Finizola, A., Aubert, M., Revil, A., Schütze, C., & Sortino, F. (2009). Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. Journal of Volcanology and Geothermal Research, 183(3–4), 213–227. https://doi.org/10.1016/j.jvolgeores.2009.04.002 Finizola, A., Lénat, J.-F., Macedo, O., Ramos, D., Thouret, J.-C., & Sortino, F. (2004). Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements. Journal of Volcanology and Geothermal Research, 135(4), 343–360. https://doi. org/10.1016/j.jvolgeores.2004.03.009 Finizola, A., Sortino, F., Lénat, J.-F., Aubert, M., Ripepe, M., & Valenza, M. (2003). The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bulletin of Volcanology, 65(7), 486–504. https://doi.org/10.1007/s00445-003-0276-z Fournier, R. O. (2006). Hydrothermal systems and volcano geochemistry. In D. Dzurisin (Ed.), Volcano deformation: Geodetic monitoring techniques (pp. 323–341). Berlin, Heidelberg: Springer. Geshi, N., Németh, K., & Oikawa, T. (2011). Growth of phreatomagmatic explosion craters: A model inferred from Suoana crater in Miyakejima volcano, Japan. Journal of Volcanology and Geothermal Research, 201(1–4), 30–38. https://doi.org/10.1016/j.jvolgeores.2010.11.012 Giberti, G., Yven, B., Zamora, M., & Vanorio, T. (2006). Database on laboratory measured data on physical properties of rocks of Campi Flegrei volcanic area (Italy). In A. Zollo, P. Capuano, & M. Corciulo (Eds.), Geophysical exploration of the Campi Flegrei (Southern Italy) Caldera’s interiors: Data, methods and results (Chap. 4, pp. 179–192). GNV, Naples. Gottsmann, J., Carniel, R., Coppo, N., Wooller, L., Hautmann, S., & Rymer, H. (2007). Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece. Geophysical Research Letters, 34, L07307. https://doi.org/ 10.1029/2007GL029594 Guidoboni, E., & Ciuccarelli, C. (2011). The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bulletin of Volcanology, 73(6), 655–677. https://doi.org/10.1007/ s00445-010-0430-3 Hase, H., Hashimoto, T., Sakanaka, S. Y., Kanda, W., & Tanaka, Y. (2005). Hydrothermal system beneath Aso volcano as inferred from selfpotential mapping and resistivity structure. Journal of Volcanology and Geothermal Research, 143(4), 259–277. https://doi.org/10.1016/j. jvolgeores.2004.12.005 Hendershot, W. H., Lalande, H., & Duquette, M. (2008). Soil reaction and exchangeable acidity. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 173–178). Boca Raton, FL. Hochstein, M. P., & Sudarman, S. (1993). Geothermal resources of Sumatra. Geothermics, 22(3), 181–200. https://doi.org/10.1016/0375- 6505(93)90042-L Ingebritsen, S. E., & Sorey, M. L. (1988). Vapor-dominated zones within hydrothermal systems: Evolution and natural state. Journal of Geophysical Research, 93(B11), 13,635–13,655. https://doi.org/10.1029/JB093iB11p13635 Isaia, R., Marianelli, P., & Sbrana, A. (2009). Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios. Geophysical Research Letters, 36, L21303. https://doi.org/10.1029/2009GL040513 Isaia, R., Vitale, S., Di Giuseppe, M. G., Iannuzzi, E., D’Assisi Tramparulo, F., & Troiano, A. (2015). Stratigraphy, structure, and volcano-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy). Geological Society of America Bulletin, 127(9–10), 1485–1504. https://doi.org/ 10.1130/B31183.1 Ishido, T. (2004). Electrokinetic mechanism for the “W”-shaped self-potential profile on volcanoes. Geophysical Research Letters, 31, L15616. https://doi.org/10.1029/2004GL020409 Johnson, T., Versteeg, R., Rockhold, M., Slater, L., Ntarlagiannis, D., Greenwood, W., & Zachara, J. (2012). Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints. Geophysics, 77(6), EN85–EN96. https://doi.org/10.1190/geo2012-0121.1 Johnson, T. C., Versteeg, R. J., Ward, A., Day-Lewis, F. D., & Revil, A. (2010). Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization. Geophysics, 75(4), WA27–WA41. https://doi. org/10.1190/1.347551 Jolly, A. D., Jousset, P., Lyons, J. J., Carniel, R., Fournier, N., Fry, B., & Miller, C. (2014). Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption. Journal of Volcanology and Geothermal Research, 286, 331–347. https://doi.org/10.1016/j.jvolgeores.2014.04.007 Keller, J. (1980). The island of Vulcano. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 36, 369–414. LaBrecque, D., & Yang, X. (2001). Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring. Journal of Environmental and Engineering Geophysics, 6(2), 83–89. https://doi.org/10.4133/JEEG6.2.83 Loke, M. H. (2003). Rapid 2D resistivity and IP inversion using the least-squares method: Geolectrical imaging 2-D and 3-D—Geotomo software (pp. 125). Retrieved from http://www.geolectrical.com, accessed August 10, 2003.Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophysical Prospecting, 44(1), 131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x Mayer, K., Scheu, B., Montanaro, C., Yilmaz, T. I., Isaia, R., Aßbichler, D., & Dingwell, D. B. (2016). Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. Journal of Volcanology and Geothermal Research, 320, 128–143. https://doi.org/10.1016/j.jvolgeores.2016.04.020 McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers, Geonics Ltd, Technical Note TN-6. Milsch, H., Kristinsdóttir, L. H., Spangenberg, E., Bruhn, D., & Flóvenz, Ó. G. (2010). Effect of the water–steam phase transition on the electrical conductivity of porous rocks. Geothermics, 39(1), 106–114. https://doi.org/10.1016/j.geothermics.2009.09.001 Neri, A., Bevilacqua, A., Esposti Ongaro, T., Isaia, R., Aspinall, W. P., Bisson, M.,…Vitale, S. (2015). Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. Journal of Geophysical Research: Solid Earth, 120, 2330–2349. https://doi.org/10.1002/2014JB011776 Orsi, G., Di Vito, M., & Isaia, R. (2004). Volcanic hazard assessment at the restless Campi Flegrei caldera. Bulletin of Volcanology, 66(6), 514–530. https://doi.org/10.1007/s00445-003-0336-4 Petrosino, S., Damiano, N., Cusano, P., Di Vito, M. A., de Vita, S., & Del Pezzo, E. (2012). Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochemistry, Geophysics, Geosystems, 13, Q07006. https://doi.org/10.1029/2011GC004030 Pilz, M., Parolai, S., & Woith, H. (2017). A 3-D algorithm based on the combined inversion of Rayleigh and Love waves for imaging and monitoring of shallow structures. Geophysical Journal International, 209(1), ggx005–ggx166. https://doi.org/10.1093/gji/ggx005 Rabaute, A., Yven, B., Chelini, W., & Zamora, M. (2003). Subsurface geophysics of the Phlegrean fields: New insights from downhole measurements. Journal of Geophysical Research, 108, 2171. https://doi.org/10.1029/2001JB001436 Revil, A., Finizola, A., Piscitelli, S., Rizzo, E., Ricci, T., Crespy, A., … Suski, B. (2008). Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements. Journal of Geophysical Research, 113, B07207. https://doi.org/10.1029/ 2007JB005394 Revil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., … Tsang Hin Sun, E. (2011). Hydrogeology of Stromboli Volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International, 186(3), 1078–1094. https://doi.org/10.1111/j.1365-246X.2011.05112.x Revil, A., Finizola, A., Sortino, F., & Ripepe, M. (2004). Geophysical investigations at Stromboli Volcano, Italy: Implications for ground water flow and paroxysmal activity. Geophysical Journal International, 157(1), 426–440. https://doi.org/10.1111/j.1365- 246X.2004.02181.x Revil, A., Hermitte, D., Spangenberg, E., & Cochemé, J. J. (2002). Electrical properties of zeolitized volcaniclastic materials. Journal of Geophysical Research. 107, 2168. https://doi.org/10.1029/2001JB000599 Revil, A., & Jardani, A. (2013). The self-potential method: Theory and applications in environmental geosciences. New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139094252 Revil, A., Johnson, T. C., & Finizola, A. (2010). Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy. Geophysical Research Letters, 37, L15308. https://doi.org/10.1029/2010GL043983 Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., & Thomas, D. M. (2017a). Induced polarization of volcanic rocks. 2. Influence of pore size and permeability. Geophysical Journal International, 208(2), 814–825. https://doi.org/10.1093/gji/ggw382 Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., & Thomas, D. M. (2017b). Induced polarization of volcanic rocks – 1. Surface versus quadrature conductivity. Geophysical Journal International, 208(2), 826–844. https://doi.org/10.1093/gji/ggw444 Revil, A., Murugesu, M., Prasad, M., & Le Breton, M. (2017). Alteration of volcanic rocks: A new non-intrusive indicator based on induced polarization measurements. Journal of Volcanology and Geothermal Research, 341, 351–362. https://doi.org/10.1016/j. jvolgeores.2017.06.016 Revil, A., & Pezard, P. A. (1998). Streaming electrical potential anomaly along faults in geothermal areas. Geophysical Research Letters, 25(16), 3197–3200. https://doi.org/10.1029/98GL02384 Roberts, J. J., Duba, A. G., Bonner, B. P., & Kasameyer, P. W. (2001). The effects of capillarity on electrical resistivity during boiling in metashale from scientific corehole SB-15-D, The Geysers, California, USA. Geothermics, 30(2–3), 235–254. https://doi.org/10.1016/S0375- 6505(00)00052-3 Rosas-Carbajal, M., Komorowski, J.-C., Nicollin, F., & Gibert, D. (2016). Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Scientific Reports, 6(1), 29,899. https://doi.org/10.1038/srep29899 Rosi, M., Sbrana, A., & Principe, C. (1983). The phlegraean fields: Structural evolution, volcanic history and eruptive mechanisms. Journal of Volcanology and Geothermal Research, 17(1–4), 273–288. https://doi.org/10.1016/0377-0273(83)90072-0 Serra, M., Festa, G., Roux, P., Gresse, M., Vandemeulebrouck, J., & Zollo, A. (2016). A strongly heterogeneous hydrothermal area imaged by surface waves: The case of Solfatara, Campi Flegrei, Italy. Geophysical Journal International, 205(3), 1813–1822. https://doi.org/10.1093/gji/ ggw119 Si, H. (2015). TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2), 1–36. https:// doi.org/10.1145/2629697 Smith, V. C., Isaia, R., & Pearce, N. J. G. (2011). Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic markers. Quaternary Science Reviews, 30(25–26), 3638–3660. https://doi.org/10.1016/j. quascirev.2011.07.012 Tassi, F., Vaselli, O., Papazachos, C. B., Giannini, L., Chiodini, G., Vougioukalakis, G. E.,…Panagiotopoulos, D. (2013). Geochemical and isotopic changes in the fumarolic and submerged gas discharges during the 2011–2012 unrest at Santorini caldera (Greece). Bulletin of Volcanology, 75(4), 711. https://doi.org/10.1007/s00445-013-0711-8 Thien, B. M. J., Kosakowski, G., & Kulik, D. A. (2015). Differential alteration of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems. Geothermal Energy, 3(1), 11. https://doi.org/10.1186/s40517-015-0031-7 Troiano, A., Giuseppe, M. G. D., Patella, D., Troise, C., & Natale, G. D. (2014). Electromagnetic outline of the Solfatara–Pisciarelli hydrothermal system, Campi Flegrei (southern Italy). Journal of Volcanology and Geothermal Research, 277, 9–21. https://doi.org/10.1016/j. jvolgeores.2014.03.005 Ussher, G., Harvey, C., Johnstone, R., & Anderson, E. (2000). Understanding the resistivities observed in geothermal systems. In World geothermal congress proceedings (pp. 1915–1920). Japan: Kyusyu-Tohoku. Vanorio, T., Prasad, M., Patella, D., & Nur, A. (2002). Ultrasonic velocity measurements in volcanic rocks: Correlation with microtexture. Geophysical Journal International, 149(1), 22–36. https://doi.org/10.1046/j.0956-540x.2001.01580.xVillasante-Marcos, V., Finizola, A., Abella, R., Barde-Cabusson, S., Blanco, M. J., Brenes, B., … Trigo, P. (2014). Hydrothermal system of Central Tenerife volcanic complex, Canary Islands (Spain), inferred from self-potential measurements. Journal of Volcanology and Geothermal Research, 272, 59–77. https://doi.org/10.1016/j.jvolgeores.2013.12.007 Vito, M. A. D., Isaia, R., Orsi, G., Southon, J., de Vita, S., D’Antonio, M.,…Piochi, M. (1999). Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research, 91(2–4), 221–246. https://doi.org/10.1016/S0377- 0273(99)00037-2 Waxman, M. H., & Smits, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(02), 107–122. https://doi.org/10.2118/1863-A Werner, C., Evans, W. C., Kelly, P. J., McGimsey, R., Pfeffer, M., Doukas, M., & Neal, C. (2012). Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano, Alaska. Geochemistry, Geophysics, Geosystems, 13, Q03015. https://doi.org/10.1029/2011GC003794 White, D. E., Muffler, L. J. P., & Truesdell, A. H. (1971). Vapor-dominated hydrothermal systems compared with hot-water systems. Economic Geology, 66(1), 75–97. https://doi.org/10.2113/gsecongeo.66.1.75 Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J., & Cuttler, S. (2014). Image-guided inversion of electrical resistivity data. Geophysical Journal International, 197(1), 292–309. https://doi.org/10.1093/gji/ggu001 Zimbelman, D. R., Rye, R. O., & Breit, G. N. (2005). Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chemical Geology, 215(1–4), 37–60. https://doi.org/10.1016/j.chemgeo.2004.06.056 Zollo, A., Maercklin, N., Vassallo, M., Dello Iacono, D., Virieux, J., & Gasparini, P. (2008). Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophysical Research Letters, 35, L12306. https://doi.org/10.1029/2008GL034242en
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien
dc.description.journalTypeJCR Journalen
dc.contributor.authorGresse, Marceauen
dc.contributor.authorVandemeulebrouck, Jeanen
dc.contributor.authorByrdina, Svetlanaen
dc.contributor.authorChiodini, Giovannien
dc.contributor.authorRevil, Andréen
dc.contributor.authorJohnson, Timothy C.en
dc.contributor.authorRicci, Tullioen
dc.contributor.authorVilardo, Giuseppeen
dc.contributor.authorMangiacapra, Annaritaen
dc.contributor.authorLebourg, Thomasen
dc.contributor.authorGrangeon, Jacquesen
dc.contributor.authorBascou, Pascaleen
dc.contributor.authorMetral, Laurenten
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentPacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, USA,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentGéosciences Azur UMR 6526, Nice, Franceen
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
dc.contributor.departmentGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.deptPacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, USA,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptGéosciences Azur UMR 6526, Nice, France-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.deptGrenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France,-
crisitem.author.orcid0000-0002-2991-4215-
crisitem.author.orcid0000-0001-8948-5718-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-0553-5384-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.orcid0000-0001-8393-923X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations 50

34
checked on Feb 10, 2021

Page view(s)

339
checked on Apr 24, 2024

Download(s)

45
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric