Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10522
DC FieldValueLanguage
dc.contributor.authorallViccaro, M.; Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso Italia 57, I-95129, Catania (Italy)en
dc.contributor.authorallZuccarello, F.; Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso Italia 57, I-95129, Catania (Italy)en
dc.contributor.authorallCannata, A.; Università degli Studi di Perugia, Dipartimento di Fisica e Geologia, via A. Pascoli, I-06123, Perugia (Italy)en
dc.contributor.authorallPalano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2017-03-24T07:57:35Zen
dc.date.available2017-03-24T07:57:35Zen
dc.date.issued2016-08-04en
dc.identifier.urihttp://hdl.handle.net/2122/10522en
dc.description.abstractIntegrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.en
dc.description.sponsorshipThe petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/121 (2016)en
dc.subjectPetrologyen
dc.subjecteruptionen
dc.subjectGPSen
dc.subjectvolcano seismologyen
dc.subjectEtnaen
dc.titleHow a complex basaltic volcanic system works: constraints from integrating seismic, geodetic and petrological data at Mt. Etna volcano during the July-August 2014 eruptionen
dc.title.alternativeHow a complex basaltic volcanic system worksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5659–5678en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/2016JB013164/abstracten
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1002/2016JB013164en
dc.relation.referencesAcocella, V., and M. Neri (2003), What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms, Bull. Volcanol., 65(7), 461-476. Allegre, C. J., A. Provost, and C. Jaupart (1981), Oscillatory zoning: a pathological case of crystal growth, Nature, 294, 223–229. Andronico, D., S. Branca, S. Calvari, M. Burton, T. Caltabiano, R. A. Corsaro, P. Del Carlo, G. Garfi, L. Lodato, L. Miraglia, F. Murè, M. Neri, E. Pecora, M. Pompilio, G. G. Salerno, and L. Spampinato (2005), A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol., 67, 314–330 doi:10.1007/s00445-004-0372-8. Andronico, D., M. D. Lo Castro, M. Sciotto, and L. Spina (2013), The 2010 ash emissions at the summit craters of Mt Etna: Relationship with seismo-acoustic signals, J. Geophys. Res. Solid Earth, 118, 51–70, doi:10.1029/2012JB009895. Barnie, T. D., D. Keir, I. J. Hamling, B. Hofmann, M. Belachew, S. Carn, D. Eastwell, J. O. S. Hammond, A. Ayele, C. Oppenheimer, and T. Wright (2015), A multidisciplinary study of the final episode of the Manda Hararo dyke sequence, Ethiopia, and implications for trends in volcanism during the rifting cycle, in Magmatic rifting and active volcanism, edited by T. J. Wright et al., Geological Society of London, Special Publications 420, London.Battaglia, J., K. Aki, and T. Staudacher (2005), Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 2. Estimation of lava output, J. Volcanol. Geotherm. Res., 147, 291–308. Battaglia, J., K. Aki, and V. Ferrazzini (2005), Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 1. Location of tremor sources, J. Volcanol. Geotherm. Res., 147, 268–290. Behncke, B., S. Branca, R. A. Corsaro, E. De Beni, L. Miraglia, and C. Proietti (2014), The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater, J. Volcanol. Geotherm. Res., 270, 10–21, doi:10.1016/j.jvolgeores.2013.11.012. Bindeman, I. N., A. M. Davis, and M. J. Drake (1998), Ion microprobe study of plagioclase–basalt partition experiments at natural concentration level of trace elements, Geochim. Cosmochim. Acta, 62, 660–676. Bonanno, A., M. Palano, E. Privitera, S. Gresta, and G. Puglisi (2011), Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997-1998), Terra Nova, 23, 339-348, doi:10.1111/j.1365-3121.2011.01019.x. Böhm, J., A. Niell, P. Tregoning, and H. Schuh (2006), Global Mapping Function (GMF): A new empirical mapping function based on data from numerical weather model data, Geophys. Res. Lett., 33, B02406, doi:10.1029/2005GL025546. Blundy, J. D., and K. V. Cashman (2001), Ascent-driven crystallization of dacite magmas at Mount St. Helens, 1980–1986, Contrib. Mineral. Petrol., 140, 631–650. Blundy, J. D., and K. V. Cashman (2005), Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens Volcano, Geology, 33, 793-796. Burton, M. R., M. Neri, D. Andronico, S. Branca, T. Caltabiano, S. Calvari, R. A. Corsaro, P. Del Carlo, G. Lanzafame, L. Lodato, L. Miraglia, G. G. Salerno, and L. Spampinato (2005), Etna 2004–2005: An archetype for geodynamically-controlled effusive eruptions, Geophys. Res. Lett., 32(9), doi:10.1029/2005GL022527. Cannata, A., A. Catania, S. Alparone, and S. Gresta (2008), Volcanic tremor at Mt. Etna: inferences on magma dynamics during effusive and explosive activity, J. Volcanol. Geotherm. Res., 178, 19-31, doi:10.1016/j.jvolgeores.2007.11.027. Cannata, A., G. Di Grazia, M. Aliotta, C. Cassisi, P. Montalto, and D. Patanè (2013), Monitoring seismo-volcanic and infrasonic signals at volcanoes: Mt. Etna case study, Pure Appl. Geophys., doi:10.1007/s00024-012-0634-x. Cannata, A., G. Spedalieri, B. Behncke, F. Cannavò, G. Di Grazia, S. Gambino, S. Gresta, S. Gurrieri, M. Liuzzo, and M. Palano (2015), Pressurization and depressurization phases inside the plumbing system of Mount Etna volcano: Evidence from a multiparametric approach, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012227. Chiarabba, C., A. Amato, E. Boschi, and F. Barberi (2000), Recent seismicity and tomographic modeling of the Mount Etna plumbing system, J. Geophys. Res., 105(B5), 10923-10938, doi:10.1029/1999JB900427. Chouet, B. (1996), Long-period volcano seismicity: its source and use in eruption forecasting, Nature, 380, 309–316. Chouet, B. A., and R. S. Matoza (2013), A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption, J. Volcanol. Geotherm. Res., 252, 108-175, doi:10.1016/j.jvolgeores.2012.11.013. Corsaro, R. A., and M. Pompilio (2004), Buoyancy-controlled eruptions of magmas at Mt Etna, Terra Nova, 16, 16-22. Costa. F., and S. Chakraborty (2004), Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine, Earth Planet. Sci. Lett., 227, 517–530. Costa, F., R. Dohmen, and S. Chakraborty (2008), Timescales of magmatic processes from modeling the zoning patterns of crystals, in Minerals, Inclusions and Volcanic Processes, Rev. Mineral. Geochem., vol. 69, edited by K. D. Putirka, and F. J. Tepley III, pp. 545–594,Mineral. Soc. Amer., Chantilly, VA, USA. Costa, F., and D. J. Morgan (2010), Time constraints from chemical equilibration in magmatic crystals, in Timescales of magmatic processes: from core to atmosphere, edited by A. Dosseto et al., pp. 125–159, Wiley-Blackwell, West Sussex.Davidson, J. P., F. Tepley III, Z. Palacz, and S. Meffan-Main (2001), Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks, Earth Plan. Sci. Lett., 184, 427-442. Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R., and J. M. Hora (2007), Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems, Ann. Rev. Earth Planet. Sci., 35, 273-311. De Beni, E., B. Behncke, S. Branca, I. Nicolosi, R. Carluccio, F. D’Ajello Caracciolo, and M. Chiappini, (2015), The continuing story of Etna’s New Southeast Crater (2012-2014): evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res., 303, 175–186. Di Grazia, G., S. Falsaperla, and H. Langer (2006), Volcanic tremor location during the 2004 Mount Etna lava effusion, Geophys. Res. Lett., 33, L04304, doi:10.1029/2005GL025177. Di Grazia, G., A. Cannata, P. Montalto, D. Patanè, E. Privitera, L. Zuccarello, and E. Boschi (2009), A multiparameter approach to volcano monitoring based on 4D analyses of seismovolcanic and acoustic signals: The 2008 Mt. Etna eruption, Geophys. Res. Lett., 36, L18307, doi:10.1029/2009GL039567. Dohmen, R., and S. Chakraborty (2007), Fe-Mg diffusion in olivine II: Point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine, Phys. Chem. Min., 34, 409-430. Druitt, T., F. Costa, E. Deloule, M. Dungan, and B. Scaillet (2012), Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano, Nature, 482, 77-82. Dzurisin, D. (2007), Volcano Deformation: Geodetic Monitoring Techniques, Springer Praxis, Berlin, 441 pp. Efron, B. (1982), The Jackknife, the Bootstrap and Other Resampling Plans, vol. 38, pp. 1–92, Soc. for Ind. and Appl. Math., Philadelphia, Pa., doi:10.1137/1.9781611970319. Gambino, S., A. Cannata, F. Cannavò, A. La Spina, M. Palano, M. Sciotto, L. Spampinato, and G. Barberi (2016), The unusual 28 December 2014 dike-fed paroxysm at Mount Etna: Timing and mechanism from a multidisciplinary perspective, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012379. Ginibre, C., A. Kronz, and G. Wörner (2002), High resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning, Contrib. Mineral. Petrol., 142, 436–448. González, P. J., and M. Palano (2014), Mt. Etna 2001 eruption: New insights into the magmatic feeding system and the mechanical response of the western flank from a detailed geodetic dataset, J. Volcanol. Geotherm. Res., 274, 108–121, doi:10.1016/j.jvolgeores.2014.02.001. Greco F., G. Currenti, M. Palano, A. Pepe, and S. Pepe (2016), Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: The 25–26 October 2013 Etna lava fountaining event, Geophys. Res. Lett., doi:10.1002/2016GL068426. Herring, T. A., R. W. King, and S. C. McClusky (2010), Introduction to GAMIT/GLOBK, Release 10.4, pp. 1–48, MIT Press, Cambridge. Kahl, M., S. Chakraborty, F. Costa, and M. Pompilio (2011), Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna, Earth Planet. Sci. Lett., 308, 11-22. Kahl, M., S. Chakraborty, F. Costa, M. Pompilio, M. Liuzzo, and M. Viccaro (2013), Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptions of Mt. Etna, Bull. Volcanol., 75, art. number 692, doi:10.1007/s00445-013-0692-7. Kahl, M., S. Chakraborty, M. Pompilio, and F. Costa (2015), Constraints on the nature and evolution of the magma plumbing system of Mt. Etna volcano (1991-2008) from a combined thermodynamic and kinetic modelling of the compositional record of minerals, J. Petrol., 56, 2025-2068. La Spina, A., M. Burton, G. G. Salerno (2010), Unravelling the processes controlling gas emission from the central and northeast craters of Mt. Etna, J. Volcanol. Geotherm. Res., 198, 368-376. Longhi, J., D. Walker, and J. F. Hays (1976), Fe and Mg in plagioclase, Proceedings of the Luna Science Conference 7th, 1, 1281–1300. Martí, J., A. Castro, C. Rodríguez, F. Costa, S. Carrasquilla, R. Pedreira, and X. Bolos (2013), Correlation of magma evolution and geophysical monitoring during the 2011-2012 El Hierro (Canary Islands) submarine eruption, J. Petrol., 54, 1349-1373. Martini, F., F. Tassi, O. Vaselli, R. Del Potro, M. Martinez,R. Van del Laat, and E. Fernandez (2010), Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence, J. Volcanol. Geotherm. Res., 198, 416-432. McNutt, S. R. (1994), Volcanic tremor amplitude correlated with the volcano explosivity index and its potential use in determining ash hazards to aviation, Acta Vulcanol., 5, 193-196. McNutt, S. R., and T. Nishimura (2008), Volcanic tremor during eruptions: Temporal characteristics, scaling and constraints on conduit size and processes, J. Volcanol. Geotherm. Res., 178, 10-18. Morgan, D. J., and S. Blake (2006), Magmatic residence times of zoned phenocrysts: introduction and application of the binary element diffusion modeling (BDM) technique, Contrib. Mineral. Petrol., 151, 58-70. Morgan, D. J., S. Blake, N. W. Rogers, B. De Vivo, G. Rolandi, R. Macdonald, and C. J. Hawkesworth (2004), Time scales of crystal residence and magma chamber volume from modeling of diffusion profiles in phenocrysts: Vesuvius 1944, Earth Planet. Sci. Lett., 222, 933-946. Nelson, S. T., and A. Montana (1992), Sieve-textured plagioclases in volcanic rocks produced by rapid decompression, American Mineralogist, 77, 1242–1249. Nicotra, E., and M. Viccaro (2012a), Unusual magma storage conditions at Mt. Etna (Southern Italy) as evidenced by plagioclase megacryst-bearing lavas: implications for the plumbing system geometry and summit caldera collapse, Bull. Volcanol., 74, 795–815. Nicotra, E., and M. Viccaro (2012b), Transient uprise of gas and gas-rich magma batches fed the pulsating behavior of the 2006 eruptive episodes at Mt. Etna volcano, J. Volcanol. Geotherm. Res., 227–228, 102–118. Ortoleva, P. J. (1990), Role of attachment kinetic feedback in the oscillatory zoning of crystals growth from melts, Earth-Sci. Rev., 29, 3–8. Palano, M., M. Rossi, C. Cannavò, V. Bruno, M. Aloisi, D. Pellegrino, M. Pulvirenti, G. Siligato, and M. Mattia (2010), Etn@ref, a geodetic reference frame for Mt. Etna GPS networks, Ann. Geophys., 53(4), 48–79, doi:10.4401/af-4879. Patanè, D., G. Di Grazia, A. Cannata, P. Montalto, and E. Boschi (2008), The shallow magma pathway geometry at Mt. Etna volcano, Geochem. Geophys. Geosyst., 9, Q12021,doi:10.1029/2008GC002131. Patanè, D., A. Aiuppa, M. Aloisi, B. Behncke, A. Cannata, M. Coltelli, G. Di Grazia, S. Gambino, S. Gurrieri, M. Mattia, and G. Salerno (2013), Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle, J. Geophys. Res., 118, 1–21, doi: 10.1002/jgrb.50248. Pearce, T. H., and A. M. Kolisnik (1990), Observation of plagioclase zoning using interference imaging, Earth-Sci. Rev., 29, 9–26. Phinney, W. C. (1992), Partitioning coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: implications for Archean and lunar anorthosites, Geochim. Cosmochim. Acta, 56, 1885–1895. Ruprecht, P., and G. Wörner (2007), Variable regimes in magma system documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones, J. Volcanol. Geotherm. Res., 165, 142–162. Ryan, M. P.(1987), Neutral buoyancy and the mechanical evolution of magmatic systems, in Magmatic Processes: Physicochemical Principles, edited by B. O. Mysen, pp. 259-287, The Geochemical Society Special Publication 1, University Park, Pennsylvania. Shea, T., K. J. Lynn, and M. O. Garcia (2015), Cracking the olivine zoning code: Distinguishing between crystal growth and diffusion, Geology, 43, 935-938 doi: 10.1130/G37082.1. Spampinato, L., S. Calvari, C. Oppenheimer, and L. Lodato (2008), Shallow magma transport for the 2002–3 Mt. Etna eruption inferred from thermal infrared surveys, J. Volcanol. Geotherm. Res., 177, 301–312. Spampinato, L., M. Sciotto, A. Cannata, F. Cannavò, A. La Spina, M. Palano, G. G. Salerno, E. Privitera, and T. Caltabiano (2015), Multiparametric study of the February–April 2013 paroxysmal phase of Mt. Etna New South-East crater, Geochem. Geophys. Geosyst., 16, 1932–1949, doi:10.1002/2015GC005795. Streck, M. J. (2008), Mineral textures and zoning as evidence for open system processes, in Minerals, inclusions and volcanic processes, Rev. Mineral. Geochem., vol. 69, edited by K. D. Putirka, and F. J. Tepley III, (), pp. 595-622, , Mineral. Soc. Amer., Chantilly, VA, USA.. Sugawara, T. (2001), Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications, Contrib. Mineral. Petrol., 141, 659–686. Tiampo, K. F., J. B. Rundle, J. Fernandez, and J. O. Langbein (2000), Spherical and ellipsoidal volcanic sources at Long Valley caldera, California using a genetic algorithm inversion technique, J. Volcanol. Geotherm. Res., 102(3), 189–206. Tsuchiyama, A. (1985), Dissolution kinetics of plagioclase in the melt of the system diopside–albite–anorthite, and the origin of dusty plagioclase in andesites, Contrib. Mineral. Petrol., 89, 1-16. Viccaro, M., P. P.Giacomoni, C. Ferlito, and R. Cristofolini (2010), Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts, Lithos, 116, 77–91. Viccaro, M., I. Garozzo, A. Cannata, G. Di Grazia, and S. Gresta (2014), Gas burst vs. gas-rich magma recharge: A multidisciplinary study to reveal factors controlling duration of the recent paroxysmal eruptions at Mt. Etna, J. Volcanol. Geotherm. Res., 278–279, 1–13. Viccaro, M., R. Calcagno, I. Garozzo, M. Giuffrida, and E. Nicotra (2015), Continuous magma recharge at Mt. Etna during the 2011–2013 controls the style of volcanic activity and compositions of erupted lavas, Min. Petrol., 109, 67–83, doi:10.1007/s00710-014-0352-4. Viccaro, M., D. Barca, W. A. Bohrson, C. D’Oriano, M. Giuffrida, E. Nicotra, B. W. Pitcher (2016a), Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years, Lithos, 248-251, 309-323. Viccaro, M., M. Giuffrida, E. Nicotra, and R. Cristofolini (2016b),Timescales of magma storage and migration recorded by olivine crystals in basalts of the March-April 2010 eruption at Eyjafjallajökull volcano, Iceland, Am. Mineral., 101, 222-230. Yang, X. M., P. M. Davis, and J. H. Dieterich (1988), Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing, J. Geophys. Res., 93(B5), 4249–4257, doi:10.1029/JB093iB05p04249. Wilke, M., and H. Behrens (1999), The dependence of partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity, Contrib. Mineral. Petrol., 137, 102–114. Williams, C. A., and G. Wadge (2000), An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry, J. Geophys. Res., 105(B4), 8103–8120, doi:10.1029/1999JB900307. Zellmer, G. F., S. Blake, D. Vance, C. Hawkesworth, and S. Turner (1999), Plagioclase residence times at two island arc volcanoes (Kameni island, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics, Contr. Mineral. Petrol., 136, 345-357. Zellmer, G. F., R. S. J. Sparks, C. J. Hawkesworth, and M. Wiedenbeck (2003), Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts, J. Petrol., 44, 1413-1431.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorViccaro, M.en
dc.contributor.authorZuccarello, F.en
dc.contributor.authorCannata, A.en
dc.contributor.authorPalano, M.en
dc.contributor.departmentUniversità degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso Italia 57, I-95129, Catania (Italy)en
dc.contributor.departmentUniversità degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso Italia 57, I-95129, Catania (Italy)en
dc.contributor.departmentUniversità degli Studi di Perugia, Dipartimento di Fisica e Geologia, via A. Pascoli, I-06123, Perugia (Italy)en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità degli Studi di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-7050-9879-
crisitem.author.orcid0000-0003-0320-7528-
crisitem.author.orcid0000-0002-0028-5822-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2016_Viccaro_et al [ETNA_2014] JGR.pdfMain article8.15 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s)

177
checked on Apr 24, 2024

Download(s)

11
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric