Options
Lauret, Frédéric
Loading...
Preferred name
Lauret, Frédéric
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessSeasonal Environmental Controls on Soil CO2 Dynamics at a High CO2 Flux Sites (Piton de la Fournaise and Mayotte Volcanoes)(2023)
; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near-surface soil CO2 concentration by performing a time-lagged detrended cross-correlation analysis on years-long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.89 21 - PublicationRestrictedVolcano Crisis Management at Piton de la Fournaise (La Réunion) during the COVID-19 Lockdown(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In March 2020, the coronavirus disease 2019 outbreak was declared a pandemic by the World Health Organization and became a global health crisis. Authorities worldwide implemented lockdowns to restrict travel and social exchanges in a global effort to counter the pandemic. In France, and in French overseas departments, the lockdown was effective from 17 March to 11 May 2020. It was in this context that the 2–6 April 2020 eruption of Piton de la Fournaise (La Réunion Island, Indian Ocean) took place. Upon the announcement of the lockdown in France, a reduced activity plan was set up by the Institut de Physique du Globe de Paris, which manages the Observatoire Volcanologique du Piton de la Fournaise (OVPF). The aim was to (1) maintain remote mon- itoring operations by teleworking and (2) authorize fieldwork only for critical reasons, such as serious breakdowns of stations or transmission relays. This eruption provided an opportunity for the observatory to validate its capacity to manage a volcanic crisis with 100% remotely operated monitoring networks. We thus present the long- and short-term precursors to the eruption, and the evolution of the eruption recorded using the real-time monitoring data as communicated to the stakeholders. The data were from both continuously recording and transmitting field instruments as well as satellites. The volcano observatory staff remotely managed the volcano crisis with the various stake- holders based only on these remotely functioning networks. Monitoring duties were also assured in the absence of ad hoc field investigation of the eruption by observatory staff or face-to-face communications. The density and reliability of the OVPF networks, com- bined with satellite observations, allowed for trustworthy instrument-based monitoring of the eruption and continuity of the OVPF duties in issuing regular updates of volcanic activity in the context of a double crisis: volcanic and health.288 4