Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7195
DC FieldValueLanguage
dc.contributor.authorallPetrucci, Olga; CNR-IRPIen
dc.contributor.authorallPolemio, Maurizio; CNR-IRPIen
dc.date.accessioned2011-11-17T13:38:52Zen
dc.date.available2011-11-17T13:38:52Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/7195en
dc.description.abstractPast Damaging Hydrogeological Events (DHEs), which can be defined as periods characterised by heavy rainfall inducing such damaging phenomena as landslides and floods, are analysed in this article. The work is focused on the relationships between these phenomena and the characteristics of triggered rainfall, to supply useful suggestions for early detection and damage mitigation. The analysis of past DHEs allows for the characterisation of the main types of DHEs, which affected a selected area in the past and could affect it again in the future. The proposed characterisation is based on triggering scenarios (meteorological conditions preceding the occurrence of DHEs), DHE‘s effects (damage caused by landslides and floods) and triggering factors (rainfall of different durations). Based on these features, the typical DHEs affecting a study area can be outlined and ranked according to their severity, thus specific emergency management can be planned to successfully manage them. To obtain results that have a reliable statistical meaning, a large amount of data of three different types (meteorological, rainfall and damage data) must be treated, and some indices, allowing the comparative analysis of these kinds of data, have to be introduced. In this work we describe the methodological approach, which can be applied in different climatic and anthropogenic contexts;finally, some applications of the proposed method to the region of Calabria (South Italy) are presenteden
dc.language.isoEnglishen
dc.publisher.nameNova Publishersen
dc.relation.ispartofEnvironmental Research Journalen
dc.relation.ispartofseries5en
dc.subjectNATURAL HAZARDen
dc.subjectDAMAGEen
dc.subjectFLOODen
dc.subjectLANDSLIDEen
dc.titleDealing with hydro-geological events: mitigation and history casesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber727-748en
dc.identifier.URLhttps://www.novapublishers.com/catalog/product_info.php?products_id=26677en
dc.subject.INGV05. General::05.08. Risk::05.08.02. Hydrogeological risken
dc.relation.referencesAA.VV. (1983). A Report on a Workshop on Mitigation Strategies for Communities Prone to Multiple Natural Hazards. Advisory Board on the Built Environment, Commission on Engineering Technical Systems and National Research Council, Snowmass, Colorado July 6-8, 1983. National Academic Press, Washington D.C, 1-22. Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Eng. Geol .73, 3-4, 247-265. Au, S.W.C. (1998). Rain induced slope instability in Hong Kong. Eng. Geol. 51, 1-36. Barnikel, F.; Becht, M. (2003). A historical analysis of hazardous events in the Alps – the case of Hindelang (Bavaria, Germany). Natural Hazards and Earth System Sciences 3, 625-635. Barrera, A.; Barriendos, M.; Llasat, M.C. (2005). Extreme flash floods in Barcelona County. Adv. Geosci., 2, 111–116, 2005, http://www.adv-geosci.net/2/111/2005/. Barry, R.G.; Chorley, R.J. (2003). Atmosphere, whether and climate. Routledge Ed., London, 8th edition, pp.421. Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Francés, F.; Ouarda, T.; Thorndycraft, V. R.; Enzel, Y.; Bardossy, A.; Coeur, D.; Bobée, B. (2004). Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of Scientific Methods, Natural Hazards 31, 623-643. Blong, R. (2003). A review of damage intensity scales. Natural Hazards and Earth System Sciences 29, 57-76. Blöschl, G.; Reszler, C.; Komma, J. (2008). A spatially distributed flash flood forecasting model. Environmental Modelling and Software 23, 464-478. Buchroithner, M.F. (2002). Meteorological and earth observation remote sensing data for mass movement preparedness, Advances in Space Research 29, 1, 5-16. Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler 62A, 1-2, 23-27. Caloiero, D.; Gabriele, S.; Govi, M.; Petrucci, O. (1996). Il nubifragio del 13 marzo 1995 in Calabria meridionale ed in Sicilia orientale. GEAM, Geoingegneria Ambientale e Mineraria, Ass. Mineraria Subalpina, 19, 3-11. Campbell, R. (1975). Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, Southern California. USGS Professional Paper, 851, 51 pp. Cascini, L.; Versace, P. (1986). Eventi pluviometrici e movimenti franosi. Atti Convegno Nazionale di Geotecnica, Bologna, 3, 171-184. Corominas, J. (2001). Landslides and climate. Keynote Lectures from the 8th International Symposium on Landslides, 4, 1–33. Crozier, M.J. (1986). Landslides: causes, consequences and environment. Croom Helm, 252 pp. Defu, L.; Liang P.; Botao X. (2004). Typhoon disaster in China: prediction, prevention, and mitigation. Nat. Hazards 49, 421–436. Devoli, G.; Morales, A.; Høeg, K. (2007). Historical landslides in Nicaragua-collection and analysis of data. Landslides 4, 5–18. Diodato, N. (2004). Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems. Nat. Hazards Earth Syst. Sci., 4, 389–397. Dore, M.H.I. (2003). Forecasting the Conditional Probabilities of Natural Disasters in Canada as a Guide for Disaster Preparedness. Natural Hazards and Earth System Sciences 28, 249-269. Etkin, D. (1999). Risk transference and related trends: driving forces towards more mega-disasters. Global Environmental Change Part B, Environmental Hazards 1, 2, 51-92. Floris, M.; Bozzano, F. (2008). Evaluation of landslide reactivation: a modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 94, 40–57. Giannecchini, R. (2005). Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy), Advances in Geosciences 2, 21-24. Glade, T. (2001). Landslide hazard assessment and historical landslide data - an inseparable couple? In: Glade, T., Albini, P. and Frances, F. (eds.): The use of historical data in natural hazard assessments. Advances of Technological and Natural Hazard Research, Kluwer, 153-169. Glade, T.; Albini, P.; Frances, F. (2001). An introduction to the use of historical data in natural hazard assessments. In: Glade, T., Albini, P., Frances, F. (eds.). The Use of Historical Data in Natural Hazards Assessment, Advances in Natural and Technological Hazards Research, 17, Kluwer, 17-25. Glaser, R.; Stangl, H. (2003). Historical floods in the Dutch Rhine Delta. Natural Hazards and Earth System Sciences 3, 605-613. Glaser, R.; Stangl, H. (2004). Climate and floods in central Europe since ad 1000: data, methods, results and consequences. Surveys in Geophysics 25, 485–510. Govi, M.; Mortara, G.; Sorzana P.F. (1985). Eventi idrologici e frane. Geologia Applicata e Idrogeologia 20, 2, 359-375. Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys, 98, 239-267. Highland, L.M. (2003). An account of preliminary landslide damage and losses resulting from the February 28, 2001, Nisqually, Washington, Earthquake, U.S. Geological Survey Open-File report 03-211, online version: http://pubs.usgs.gov/of/2003/ofr-03-211/. Hosking, J.R.M. (1986). The theory of probability-weighted moments. IBM Math., Research Report RC12210. Yorktown Heights, New York, 160 pp. Houze, R.; Smull, B.; Dodge, P. (1990) Mesoscale organization of springtime rainstorms in Oklahoma, Monthly Weather Review 613-654. Hsu, H.H.; Fu, J.C.; Liu, W.C. (2003). Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan. Journal of Hydrology 283, 1-4, 267-280. I.F.R.C. (International Federation of Red Cross) (2001). World disasters report - Focus on recovery. J. Walter Ed., SADAG, Bellegarde-Valserine, France. Jenkinson, A.F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society 81, 158-171. Jonkman, S. N.; Kelman, I., (2005). An analysis of the causes and circumstances of flood disaster deaths. Disasters 29, 1, 75−97. Keefer, D.K.; Wilson, R.C.; Mark, R.; Brabb, E.E.; Brown, W.M.III; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S. (1987). Real time landslide warning during heavy rainfall. Science, 238, 921-925. Krzysztofowicz, R. (2001). The case for probabilistic forecasting in hydrology. Journal of Hydrology 249, 2-9. Kumar Dahal, R.; Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100, 3-4, 429-443. Lastoria, B.; Simonetti, M.R.; Casaioli, M.; Mariani, S.; Monacelli, G. (2006). Socio-economic impacts of major floods in Italy from 1951 to 2003. Advances in Geosciences 7, 223–229. Llasat, M.C.; Barriendos, M.; Barrera, A. (2006). The use of historical data in flood risk assessment. Application to Catalonia (NE Spain) 14th – 20th centuries. In: View from the South, Environmental stories from the Mediterranean Word, M. Armiero Ed., CNR, Istituto di Studi sulle Società del Mediterraneo, Napoli (Italy), 95-111. Luino, F. (2005). Sequence of instability processes triggered by heavy rainfall in the northern Italy. Geomorphology 66, 1-4, 13-39. Marco, J.B.; Cayuela, A. (1992). Urban flooding. The flood planned town. Pre-proc. of the NATO ASI “Coping with floods”, Erice, November 3-15, 337-353. Mark, O.; Weesakul, S.; Apirumanekul, C.; Aroonnet, S.B.; Djordjevic, S. (2004). Potential and limitations of 1D modelling of urban flooding. J. Hydrol. 299, 284–299. NOAA: National climatic data center. Web address http://www.ncdc.noaa.gov/oa/ncdc.html. Petrucci, O.; Gullà, G. (2009a). A Support Analysis Framework for mass movement damage assessment: applications to case studies in Calabria (Italy). Natural Hazards Earth System Science 9, 315–326. Petrucci, O.; Gullà, G. (2009b). A simplified method for landslide damage scenario assessment based on historical data. Natural Hazards DOI 10.1007/s11069-009-9398-8, 2009. Petrucci, O.; Polemio, M. (2002). Hydro-geologic multiple hazard: a characterisation based on the use of meteorological and geomorphological data. 1st European Conference on Landslides, 24–26 June 2002, Prague, Czech Republic. Rybar, Stemberk and Wagner eds, Balkema Publishers, 269-274. Petrucci, O.; Polemio, M. (2003). The use of historical data for the characterisation of multiple damaging hydrogeological events. Natural Hazards and Earth System Sciences, 3, 17-30. Petrucci O., Polemio, M. (2007). Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: combined effects over the past 150 years. Natural Hazards Earth System Science 7, 361–373. Petrucci O., Polemio, M. (2009) The role of meteorological and climatic conditions in the occurrence of damaging hydro-geologic events in Southern Italy. Natural Hazards Earth System Science, 9, 105–118. Petrucci, O.; Pasqua, A.A. (2008). The study of past Damaging Hydrogeological Events for damage susceptibility zonation. Natural Hazards Earth System, 8, 881-892. Petrucci, O.; De Matteis, V.; Versace, P. (2003). Aspetti metodologici nella identificazione dell’impatto al suolo degli eventi alluvionali. Atti del Convegno Nazionale: La Difesa della Montagna, Pub. GNDCI N. 2830, 522-530. Petrucci, O.; Polemio, M.; Pasqua, A.A. (2009). Analysis of damaging hydro-geological events: the case of Calabria region (southern Italy). Environmental Management 43, 483–495. Polemio (2010). Historical floods and a recent extreme rainfall event in the Murgia karstic environment (Southern Italy). Zeitschrift für Geomorphologie, 54(Supplementary Issue 2): 195-219.. Polemio, M.; Petrucci, O. (2000). Rainfall as a landslide triggering factor: an overview of recent international research. The 8th International Symposium on Landslides in Cardiff in the year 2000, June 2000, E. Bromhead, N. Dixon and M.L. Ibsen Eds., 3,1219-1226. Polemio, M. (1998). Le calamità idrogeologiche dell’inverno 1995-96 nel territorio tarantino. Conv. Int. “La prevenzione delle catastrofi idrogeologiche: il contributo della ricerca scientifica”, CNR IRPI, Alba, Novembre 1996, 2, 63-73. Polemio, M.; Sdao, F. (1999). The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy). Engineering Geology 53, 3-4, 297-309. Reed, S.; Schaake, J.; Zhang, Z. (2007). A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. Journal of Hydrology 337, 3-4, 402-420. Remondo, J.; Bonachea, J.; Cendrero, A. (2008). Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94, 496–507. Rossi, F.; Versace, P. (1982). Criteri e metodi per l'analisi statistica delle piene. Valutazione delle piene. C.N.R.-Progetto Finalizzato Conservazione del Suolo n.165, 63-130. Samuels, P.G. (2000). An overview of flood estimation and flood prevention. Kassel Reports of Hydraulic Engineering 9, G1-G11. Sandersen, F.; Bakkehøi, S.; Hestnes, E.; Lied, K. (1996). The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. Landslides, Proc. of 7th Int. Symp. on Landslides. Trondheim, Senneset (ed.) Rotterdam, Balkema. 1, 97-113. Saucier, W.J. (2003). Principles of Meteorological Analysis. Dover Phoenix Edition, 464 pp. Schmitz, G.H.; Cullmann, J. (2008). A new proposal for online flood forecasting in flash flood prone catchments. Journal of Hydrology 360. 1-4, 1-14. Schmitt, T.G.; Thomas, M.; Ettrich, N. (2004). Analysis and modelling of flooding in urban drainage systems. J. Hydrol 299, 300-311. Schultz, G.A. (2000). Rainfall-runoff models for flood management using remote sensing data. Kassel Reports of Hydraulic Engineering, 9, D1-D41. Sirangelo, B.; Braca, G. (2004). Identification of Hazard Conditions for Mudflow Occurrence by Hydrological Model. Application of FLaIR Model to Sarno Warning System. Engineering geology. 73, n. 3-4, 267-276. Swiss Re (1998) Floods-an insurable risk?. Zurich, 48 pp. Ubertini, L. (1990). Real-time flood forecast activity by CNR-National Research Group for Prevention of Hydrogeological Hazard. Mem Soc Geol It, 45, 163-171. Usul, N.: Turan, B. (2006). Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems. Nat. Hazards 39. 213-229. Wieczoreck, G.F. (1987). Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Geol. Soc. of America, Review in Eng. Geol., VII, 93-104. Yang, Y.; Lin, H.; Guo, Z.; Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis. Computers and Geosciences 33, 1, 20-30. Yevjevich, V. (1992). Technology for coping with floods in the 21st Century. Pre-proc. of the NATO ASI “Coping with floods”, Erice, November 3-15, 43-51.en
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextrestricteden
dc.contributor.authorPetrucci, Olgaen
dc.contributor.authorPolemio, Maurizioen
dc.contributor.departmentCNR-IRPIen
dc.contributor.departmentCNR-IRPIen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-IRPI-
crisitem.author.deptCNR-IRPI-
crisitem.classification.parent05. General-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1935-3049_5_6_3.pdf474.9 kBAdobe PDF
Show simple item record

Page view(s) 20

306
checked on Apr 24, 2024

Download(s)

33
checked on Apr 24, 2024

Google ScholarTM

Check