Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5726
Authors: Harris, A. J. L.* 
Favalli, M.* 
Mazzarini, F.* 
Hamilton, C. W.* 
Title: Construction dynamics of a lava channel
Journal: Bulletin of Volcanology 
Series/Report no.: 4/71(2009)
Publisher: Springer Berlin / Heidelberg
Issue Date: May-2009
DOI: 10.1007/s00445-008-0238-6
URL: http://springerlink.metapress.com/content/n4272655526u67g7/fulltext.pdf
Keywords: Lava channel
Levees
Effusion rates
Flow dynamics
Subject Classification04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport 
04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks 
04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques 
Abstract: We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
BV_Harris et al_2009.pdf1.77 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations 50

29
checked on Feb 7, 2021

Page view(s) 50

177
checked on Apr 13, 2024

Download(s)

18
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric