Options
Harris, Andrew J. L.
Loading...
Preferred name
Harris, Andrew J. L.
Alternative Name
Harris, Andrew
Harris, A. J. L.
Harris, AJL
60 results
Now showing 1 - 10 of 60
- PublicationOpen AccessWhen the lava meets the sea: emplacement of the 2–4 ka San Bartolo lava flow field, Stromboli volcano (Italy)When a lava flow enters a body of water, either a lake, sea, river or ocean, explosive interaction may arise. However, when it is an 'a'ā lava flow entering water, a more complex interaction occurs, that is very poorly described and documented in literature. In this paper, we analysed the 2–4 ka San Bartolo lava flow field emplaced on the north flank of Stromboli volcano, Italy. The lava flow field extends from ~ 650 m a.s.l. where the eruptive fissure is located, with two lava channels being apparent on the steep down to the coast. Along the coast the lava flow field expands to form a lava delta ~ 1 km wide characterised by 16 lava ‘Flow’ units. We performed a field survey to characterise the features of lava entering the sea and the associated formation of different components and magnetic measurements to infer the flow fabrics and emplacement process of the lava flow system. We measured the density, porosity and connectivity of several specimens to analyse the effect of lava-water interaction on the content in vesicles and their connectivity and conducted a macroscopic componentry analysis (clast count) at selected sites to infer the character of the eroded offshore segment of the lava flow field and its component flow units. The collected data allowed us to define the main components of a lava delta fed by 'a'ā lava flows, with its channels, littoral units, ramps, lava tubes, and inflated pāhoehoe flows controlled by the arterial 'a'ā flow fronts. The spatial organisation of these components allowed us to build a three-step descriptive model for 'a'ā entering a water. The initial stage corresponds to the entry of channel-fed 'a'ā lava flow into the sea which fragments to form metric blocks of 'a'ā lava. Continued lava supply to the foreshore causes flow units to stall while spreading over this substrate. Subsequent 'a'ā lava flow units ramp up behind the stalled flow front barrier. Lava tubes extending through the stalled flow barrier feed the seaward extension of a bench made of several pāhoehoe flow units.
81 26 - PublicationOpen AccessModelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France)(2024)
; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ;Risk mitigation in long-dormant volcanic provinces is a challenge due to the absence of collective memory of past disasters as well as the scarcity, and subtlety, of unrest signals that can be monitored. In this study, the impact of a potential limnic eruption is assessed at the 92-m-deep lake Pavin (French Massif Central). The lake is hosted in a maar crater formed during the last eruptive event in metropolitan France (∼7 ka) and contains dissolved CO2 in the deepest water layer, below 60 m. Carbon dioxide (CO2) emissions measured at the lake surface (0.44 km2) reach up to 10.1 tons/day during the winter. Beyond this (limited) continuous degassing of the lake, the current CO2 budget in the monimolimnion layer (at a depth of 60 m to 92 m) was estimated at 1750 tons, of which about 450 tons are available for release in case of overturn of the lake. Scenarios for CO2 dispersion in the lower atmosphere were simulated with the DISGAS and TWODEE-2 models by varying (i) meteorological conditions, (ii) the amount of CO2 released, (iii) and the mechanisms of degassing during a potential limnic eruption. The simulations allowed identification and delimitation of areas potentially impacted by hazardous CO2 levels in the air down-valley from the lake and directly around the lake. The spatio-temporal evolution of the potential CO2 cloud raises issues regarding the impacts of such a hypothetical event in the close vicinity of the lake and, given the area is populated and highly visited, needs to be considered in future risk mitigation strategies.92 12 - PublicationOpen AccessAnatomy of thermal unrest at a hydrothermal system: case study of the 2021–2022 crisis at Vulcano(2023-10-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Hydrothermal systems can generate phreatic and/or phreatomagmatic explosions with little warning. Understanding the temporal and spatial evolution of geophysical and geochemical signals at hydrothermal systems is crucial for detecting precursory signs of unrest and informing on hazards. Thermal signatures of such systems are poorly defined because data records are often too short or discrete compared to activity timescales, which can be decadal. La Fossa system of Vulcano has been monitored since the 1980s and entered a period of unrest in 2021. We assessed the thermal signature of La Fossa using ground- and satellite-based data with various temporal and spatial scales. While continuously recording stations provided continuous but point-based measurements, fumarole field vent surveys and infrared images obtained from satellite-flown sensors (ASTER and VIIRS) allowed lower temporal resolution but synoptic records to be built. By integrating this multi-resolution data set, precursory signs of unrest could retrospectively be detected from February to June 2021. The intensity of all unrest metrics increased during the summer of 2021, with an onset over a few days in September 2021. By September, seismic, CO2, SO2 and other geochemical metrics also indicated unrest, leading Civil Protection to raise the alert level to yellow on October 1. Heat flux, having been 4 MW in May 2019, increasing to 90 MW by September, and peaking at 120 MW in March 2022. We convolved our thermal data sets with all other monitoring data to validate a Vulcano Fossa Unrest Index (VFUI), the framework of which can be potentially applied to any hydrothermal system. The VFUI highlighted four stages of unrest, none of which were clear in any single data set: background, precursory, onset, and unrest. Onset was characterized by a sudden release of fluids, likely caused by the failure of sealed zones that had become pressurized during the precursory phase that began possibly as early as February 2021. Unrest has been ongoing for more than 18 months and may continue for several more years. Our understanding of this system behavior has been due to hindsight, but demonstrates how multiparametric surveys can track and forecast unrest.270 16 - PublicationEmbargoMagma storage and degassing beneath the youngest volcanoes of the Massif Central (France): Lessons for the monitoring of a dormant volcanic province(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Developing appropriate monitoring strategies in long-quiescent volcanic provinces is challenging due to the rarity of recordable geochemical and geophysical signals and the lack of experienced eruptive phenomenology in living memory. This is the case in the Massif Central (France) where the last eruptive sequence formed the Pavin’s Group of Volcanoes, about 7 ka ago. There, current evidence of a mantle activity reminiscence is suggested by the presence of mineral springwaters, mofettes, and soil degassing. It appears fundamental as a prerequisite to decipher the evolution of the gas phase in the magmatic system at the time of the eruptive activity to understand the meaning of current local gas emissions. In this study, we develop an innovative approach coupling CO2 densimetry and geochemistry of fluid inclusions from products erupted by the Pavin’s Group of Volcanoes. 3D imagery by Raman spectroscopy revealed that carbonate forming in fluid inclusions may lead to underestimation of CO2 density in fluid inclusions by up to 50 % and thus to unreliable barometric estimates. Fortunately, we found that this effect may be limited by focusing on fluid inclusions with a small diameter (<4 m) and where no solid phase is detected on Raman spectra. The time evolution of the eruptions of the Pavin’s Group of Volcanoes shows a progressive decrease of the pressure of magma storage (from more than 9 kbar down to 1.5-2 kbar) in parallel to magma differentiation (from basanites at Montcineyre to benmoreites at Pavin). The analysis of the noble gases entrapped in fluid inclusions yielded two main conclusions: (1) the helium isotope signature (Rc/Ra = 6.5-6.8) is in the range of values obtained in fluid inclusions from mantle xenoliths in the Massif Central (Rc/Ra = 5.6±1.1, on average) suggesting partial melting of the subcontinental lithospheric mantle, and (2) magma degassing (4He/40Ar* from 4.0 to 16.2) mirrors magma differentiation and the progressive rise of the magma ponding zones of the Pavin’s Group of Volcanoes. According to our modelling, about 80 % of the initial gas phase would be already exsolved from these magmas, even if stored at mantle depth. Based on the results obtained from fluid inclusions, we propose a model of the evolution of the signature of noble gases and carbon isotopes from mantle depth to crustal levels. In this frame, gas emissions currently emitted in the area (Rc/Ra = 6.1-6.7 and 4He/40Ar* = 1.7) point to an origin in the lithospheric mantle. This study strongly encourages the establishment of a regular sampling of local gas emissions to detect potential geochemical variations that may reflect a change from current steady-state conditions190 2 - PublicationOpen AccessDetection of Subtle Thermal Anomalies: Deep Learning Applied to the ASTER Global Volcano Dataset(2023)
; ; ; ; ; ; ; ; ; Twenty-one years of ASTER global thermal infrared (TIR) acquisitions provide a large amount of data for volcano monitoring. These data, with high spatial and spectral resolution, enable routine investigations of volcanoes in remote and inaccessible regions, including those with no ground-based monitoring. However, the dataset is too large to be manually analyzed on a global basis. Here, we systematically process the data over several volcanoes using a deep learning algorithm to automatically extract volcanic thermal anomalies. We explore the application of a Convolutional Neural Network (CNN), specifically UNET, to detect subtle to intense anomalies exploiting the spatial relationships of the volcanic features. We employ a supervised UNET network trained with the largest (1500) labeled dataset of ASTER TIR images from five different volcanoes, namely Etna (Italy), Popocatépetl (Mexico), Lascar (Chile), Fuego (Guatemala), and Kliuchevskoi (Russia). We show that our approach achieves high accuracy (93%) with excellent generalization capabilities. The effectiveness of our model for detecting the full range of thermal emission is shown for volcanoes with very different styles of activity and tested at Vulcano (Italy). The results demonstrate the potential applicability of the proposed approach to the development of automated thermal analysis systems at the global scale using future TIR data such as the planned NASA SBG mission.70 34 - PublicationOpen AccessForest destruction by ‘a‘ā lava flow during Etna's 2002–03 eruption: Mechanical, thermal, and environmental interactions(2022-07-04)
; ; ; ; ; ; ; ; ; ; ;; ; ;; Forest destruction by ‘a‘ ̄a lava flow is common. However, mechanical and thermal interactions between the invading lava and the invaded forest are poorly constrained. We complete mapping, thermal image and sample analyses of a channel-fed ‘a‘a ̄ lava flow system that invaded forest on the NE flank of Mt. Etna (Italy) in 2002. These lava flows destroyed 231,000 trees, only 2% of which are still visible as felled trunks on the levees or at the channel-levee contact. The remaining 98% were first felled by the flow front, with the trunks then buried by the flow. Rare tree molds can be found at the rubble levee base where trees were buried by avalanching hot breccia and then burnt through, with a time scale for total combustion being a few days. Protruding trunks fell away from the flow, if felled by blocks avalanching down the levee flank, or became aligned with the flow if falling onto the moving stream. Estimated cooling rates (0.1–5.5 ◦C km− 1) are normal for well-insulated ‘a‘a ̄ flow, suggesting no thermal interaction. We find the highest phenocryst concentrations (of 50–60%, above an expected value of 30–40%) in low velocity (<0.5 m s− 1) locations. These low velocity zones are also characterized by high trunk concentrations. Thus, the common factor behind crystal and trunk deposition is velocity. That is, when the lava slows down, crystal settling occurs and trunks are preferentially deposited. Thus, although we find no thermal or textural effects due to the presence of the forest, we do find mechanical and environmental in- teractions where the trees are consumed to become part of the flow.253 149 - PublicationOpen AccessStructured elicitation of expert judgement in real-time eruption scenarios: an exercise for Piton de la Fournaise volcano, La Réunion island(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Formalised elicitation of expert judgements has been used in recent years to help tackle several problematic societal issues, including volcanic crises and pandemic threats. We present an expert elicitation exercise for Piton de la Fournaise volcano, La Réunion island, held remotely in April 2021. This involved twenty-eight experts from nine countries who considered a hypothetical effusive eruption crisis involving a new vent opening in a high-risk area. The tele-elicitation presented several challenges, but is a promising and workable option for application to future volcanic crises. Our exercise considered an “uncommon” eruptive scenario with a vent outside the present caldera and within inhabited areas, and provided uncertainty ranges for several hazard-related questions for such a scenario (e.g. probability of eruption within a defined timeframe; elapsed time until lava flow reaches a critical location, and other hazard management issues). Our exercise indicated that such a scenario would probably present very different characteristics than the eruptions observed in recent decades, and that it is fundamental to include well prepared expert elicitations in updated civil protection evacuation plans to improve disaster response procedures.241 69 - PublicationRestrictedReal-time tephra-fallout accumulation rates and grain-size distributions using ASHER (ASH collector and sizER) disdrometers(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;ASHER, a new sensor for the characterization of tephra fallout in real time, was designed and developed for easy field deployment during volcanic eruptions. It can provide information on the accumulation rate of tephra fallout in real time as well as grain-size and settling velocity of falling particles. Particle detection is achieved with a laser barrier, with size and settling velocity being calculated from the amplitude and duration of obscuration peaks. The sampling rate (31,500 Hz), laser thickness (0.5 mm) and operation (ON/OFF state and dual acquisition mode) are adapted to minimize the noise level and allow detection of particles as small as ~100 μm. Additional measurements of weight and level of accumulated material within a removable collector allow broadening of the ASHER operation to accumulation rate from 10−2 to 103 g m-2s-1. Detailed calibration tests were performed in laboratory conditions on single grains of known shape and density along with a high-speed camera to test the capability to measure grain size and terminal velocity, and during two field campaigns at Stromboli and Etna volcanoes to test the operation in the field. Long-term field deployment has shown that combining the optical barrier with an automatic collector allows for a better characterization of tephra fallout, providing an estimate of density, and, therefore, it optimizes sensor operation and minimizes false alerts. Moreover, the low power requirements and onboard processing allows to operate the sensor remotely and solely on solar power in a remote location. Although technical improvements in sensor sensitivity and processing are still possible, the results presented suggest that ground sensors for real-time detection and analysis of tephra could potentially contribute to understanding the dynamics of explosive eruptions and could be successfully integrated into monitoring systems of active volcanoes.43 2 - PublicationOpen AccessExpert elicitation during volcanic crisesThis workshop is organized by the project Lava Advance in Vulnerable Areas financed by the Agence National pour la Recherche (ANR-LAVA, PI: A. Harris, program: DS0902 2016; Project: ANR-16 CE39-0009; https://anr.fr/Project-ANR-16-CE39-0009) in collaboration with the European Volcano Early warning system project (EVE, PI: J. Marti, grant agreement: n°826292 http://www.evevolcanoearlywarning.eu/), and focuses on crisis management in case of effusive volcanic eruption in Europe and worldwide. The aim of the workshop is to get together many actors in the world of mitigating, and responding to, effusive crises for a 4 days long experience-sharing and brain-storming exercise (including volcano observatories and civil protection).
89 44 - PublicationRestrictedVolcano Crisis Management at Piton de la Fournaise (La Réunion) during the COVID-19 Lockdown(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In March 2020, the coronavirus disease 2019 outbreak was declared a pandemic by the World Health Organization and became a global health crisis. Authorities worldwide implemented lockdowns to restrict travel and social exchanges in a global effort to counter the pandemic. In France, and in French overseas departments, the lockdown was effective from 17 March to 11 May 2020. It was in this context that the 2–6 April 2020 eruption of Piton de la Fournaise (La Réunion Island, Indian Ocean) took place. Upon the announcement of the lockdown in France, a reduced activity plan was set up by the Institut de Physique du Globe de Paris, which manages the Observatoire Volcanologique du Piton de la Fournaise (OVPF). The aim was to (1) maintain remote mon- itoring operations by teleworking and (2) authorize fieldwork only for critical reasons, such as serious breakdowns of stations or transmission relays. This eruption provided an opportunity for the observatory to validate its capacity to manage a volcanic crisis with 100% remotely operated monitoring networks. We thus present the long- and short-term precursors to the eruption, and the evolution of the eruption recorded using the real-time monitoring data as communicated to the stakeholders. The data were from both continuously recording and transmitting field instruments as well as satellites. The volcano observatory staff remotely managed the volcano crisis with the various stake- holders based only on these remotely functioning networks. Monitoring duties were also assured in the absence of ad hoc field investigation of the eruption by observatory staff or face-to-face communications. The density and reliability of the OVPF networks, com- bined with satellite observations, allowed for trustworthy instrument-based monitoring of the eruption and continuity of the OVPF duties in issuing regular updates of volcanic activity in the context of a double crisis: volcanic and health.288 4