Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5186
DC FieldValueLanguage
dc.contributor.authorallConvertito, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallIervolino, I.; Dipartimento di Ingegneria Strutturale, Università degli studi di Napoli Federico IIen
dc.contributor.authorallHerrero, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2009-09-28T12:56:57Zen
dc.date.available2009-09-28T12:56:57Zen
dc.date.issued2009-10en
dc.identifier.urihttp://hdl.handle.net/2122/5186en
dc.description.abstractProbabilistic seismic hazard analysis is currently the soundest basis for the rational evaluation of ground-motion hazard for site-specific engineering design and assessment purposes. An increasing number of building codes worldwide acknowledge the uniform hazard spectra as the reference to determine design actions on structures and to select input ground motions for seismic structural analysis. This is the case, for example, in Italy where the new seismic code also requires the seismic input for nonlinear dynamic analysis to be selected on the basis of dominating events, for example, identified via disaggregation of seismic hazard. In the present study, the design earthquakes expressed in terms of representative magnitude (M), distance (R), and ε were investigated for a wide region in the southern Apennines, Italy. To this aim, the hazards corresponding to peak ground acceleration and spectral acceleration at 1 sec with a return period of 475 yr were disaggregated. For each of the disaggregation variables the shape of the joint and marginal probability density functions were studied. The first two modes expressed by M, R, and ε were extracted and mapped for the study area. The results shown provide additional information, in terms of source and ground-motion parameters, to be used along with the standard hazard maps to better select the design earthquakes. The analyses also allow us to assess how various frequency ranges of the design spectrum are differently contributed by seismic sources in the study area.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries5/99(2009)en
dc.subjectseismic hazarden
dc.subjectdisaggregationen
dc.subjectSouthern Apenniensen
dc.subjectdesign earthquakeen
dc.titleImportance of Mapping Design Earthquakes: Insights for the Southern Apennines, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2979–2991en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1785/0120080272en
dc.relation.referencesBaker, J. W., and C. A. Cornell (2006). Spectral shape, epsilon and record selection, Earthq. Eng. Struct. Dyn. 35, no. 9, 1077–1095. Bazzurro, P., and C. A. Cornell (1999). Disaggregation of seismic hazard, Bull. Seismol. Soc. Am. 89, 501–520. Benjamin, J. R., and C. A. Cornell (1970). Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill, New York. Bommer, J. J. (2004). Earthquake actions in seismic codes: Can current approaches meet the needs of PBSD? in Performance Based Seismic Design Concepts and Implementation, PEER Rept. 2004/05, Pacific Earthquake Engineering Research Center, University of California, Berkeley. Cinti, F. R., L. Faenza, W. Marzocchi, and P. Montone (2004). Probability map of the next M ≥5:5 earthquakes in Italy, Geochem. Geophys. Geosyst. 5, Q1103. Convertito, V., and A. Herrero (2004). Influence of focal mechanism in probabilistic seismic hazard analysis, Bull. Seismol. Soc.Am.94, 2124–2136. Cornell, C. A. (1968). Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58, 1583–1606. Cornell, C. A. (2004). Hazard, ground motions and probabilistic assessment for PBSD, in Performance Based Seismic Design Concepts and Implementation. PEER Rept. 2004/05, Pacific Earthquake Engineering Research Center, University of California, Berkeley. Cornell, C. A. (2005). On earthquake record selection for nonlinear dynamic analysis, The Esteva Symposium, Mexico, August 2005 (http://www .stanford.edu/group/rms/RMS_Papers/pdf/Allin/). Cramer, H. C., and M. D. Petersen (1996). Predominant seismic source distance and magnitude for Los Angeles, Orange, and Ventura Counties, California, Bull. Seismol. Soc. Am. 86, 1645–1649. CS.LL.PP. (2008). DM 14 gennaio 2008 Norme Tecniche per le Costruzioni, Gazzetta Ufficiale della Repubblica Italiana 29 (in Italian). Di Sarno, L., E. Cosenza, B. De Risi, and C. Mascolo (2006). Application of base isolation to a new building of Naples, Proc. of the World Conference on Structural Control, San Diego, Paper no. 173 (CD-ROM). EN1998-1 (2004). Eurocode 8: Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization (CEN), Brussels. Gruppo di lavoro Catalogo Parametrico dei Terremoti Italiani (CPTI) (2004). Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna. Gutenberg, B., and C. R. Richter (1944). Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185–188. Harmsen, S., and A. Frankel (2001). Geographic deaggregation of seismic hazard in the United States, Bull. Seismol. Soc. Am. 91, 13–26. Iervolino, I., and C. A. Cornell (2005). Record selection for nonlinear seismic analysis of structures, Earthq. Spectra 21, 685–713. Iervolino, I., and C. A. Cornell (2008). Probability of occurrence of velocity pulses in near-source ground motions, Bull. Seismol. Soc. Am. 98, 2262–2277. Iervolino, I., G. Maddaloni, and E. Cosenza (2008). Eurocode 8 compliant real record sets for seismic analysis of structures, J. Earthq. Eng. 12, no. 1, 54–90. Iervolino, I., G. Maddaloni, and E. Cosenza (2009). A note on selection of time-histories for seismic analysis of bridges in Eurocode 8, J. Earthq. Eng. (in press) Inoue, T., and C. A. Cornell (1990). Seismic hazard analysis of multidegree- of-freedom structures, Reliability of Marine Structures (RMS)-8, Stanford, California, 70 pp. McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop, Bull. Seismol. Soc. Am. 85, 1275–1284. Meletti, C., and V. Montaldo (2007). Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni:Valori di ag, ProgettoDPC-INGV S1, Deliverable D2 (http://esse1.mi.ingv.it/d2.html) (in Italian). Meletti, C., F. Galadini, G. Valensise, M. Stucchi, R. Basili, S. Barba, G. Vannucci, and E. Boschi (2008).Aseismic source zone modelfor the seismic hazard assessment of the Italian territory, Tectonophysics 450, 85–108. Montaldo,V., and C. Meletti (2007).Valutazione delvalore della ordinata spettrale a 1 sec e ad altri periodi di interesse ingegneristico, Progetto DPCINGV S1, Deliverable D3 (http://esse1.mi.ingv.it/d3.html) (in Italian). Montone, P., M. T. Mariucci, S. Pondrelli, and A. Amato (2004). An improved stress map for Italy and surrounding regions (Central Mediterranean), J. Geophys. Res. 109, B10410, doi 10.1029/2003JB002703. Reiter, L. (1990). Earthquake Hazard Analysis, Columbia University Press, New York, 254 pp. Sabetta, F., and A. Pugliese (1996). Estimation of response spectra and simulation of non stationary earthquake ground motion, Bull. Seismol. Soc. Am. 86, 337–352. Spallarossa, D., and S. Barani (2007). Disaggregazione della pericolosità sismica in termini di M R ε, Progetto DPC-INGV S1, Deliverable D14 (http://esse1.mi.ingv.it/d14.html) (in Italian). U.S. Nuclear Regulatory Commission (2001). Technical basis for revision of regulatory guidance on design ground motions: Hazard- and riskconsistent ground motion spectra guidelines, NUREG/CR-6728, Government Printing Office, Washington, D.C. Valensise, G., A. Amato, P. Montone, and D. Pantosti (2003). Earthquakes in Italy: Past, present and future, Episodes 26, 245–249. Wessel, P., and W. H. F. Smith (1991). Free software helps map and display data, Eos Trans. Am. Geophys. Union 72, 445–446. Westaway, R., and J. Jackson (1987). The earthquake of 1980 November 23 in Campania–Basilicata (southern Italy), Geophys. J. R. Astron. Soc. 90, 375–443.en
dc.description.obiettivoSpecifico4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorConvertito, V.en
dc.contributor.authorIervolino, I.en
dc.contributor.authorHerrero, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Ingegneria Strutturale, Università degli studi di Napoli Federico IIen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità degli Studi di Napoli Federico II-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7115-7502-
crisitem.author.orcid0000-0002-4076-2718-
crisitem.author.orcid0000-0001-5633-5852-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Convertitoetal.pdfMain article1.14 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

17
checked on Feb 10, 2021

Page view(s)

144
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric