Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1820
DC FieldValueLanguage
dc.contributor.authorallKueppers, U.; University of Munich (LMU)en
dc.contributor.authorallPerugini, D.; Università di Perugiaen
dc.contributor.authorallDingwell, D. B.; University of Munich (LMU)en
dc.date.accessioned2006-10-04T16:39:19Zen
dc.date.available2006-10-04T16:39:19Zen
dc.date.issued2006-08-30en
dc.identifier.urihttp://hdl.handle.net/2122/1820en
dc.description.abstractDespite recent advances by means of experiments and high-resolution surveys and the growing understanding of the physical processes before and during volcanic eruptions, duration and type of eruptive activity still remain highly unpredictable. This uncertainty hinders appropriate hazard and associated risk assessment tremendously. In an effort to counter this problem, experimentally generated pyroclasts have been studied by fractal statistics with the aim of evaluating possible relationships between eruption energy and fragmentation efficiency. Rapid decompression experiments have been performed on three differently porous sample sets of the 1990–1995 eruption of Unzen volcano (Japan) at 850 °C and at initial pressure values above the respective fragmentation threshold [U. Kueppers, B. Scheu, O. Spieler, D. B. Dingwell, Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res. 153 (2006) 125–135.,O. Spieler, B. Kennedy, U. Kueppers, D.B. Dingwell, B. Scheu, J. Taddeucci, The fragmentation threshold of pyroclastic rocks. EPSL 226 (2004) 139–148.]. The size distribution of generated pyroclasts has been studied by fractal fragmentation theory and the fractal dimension of fragmentation (Df), a value quantifying the intensity of fragmentation, has been measured for each sample. Results showthat size distribution of pyroclastic fragments follows a fractal law(i.e. power-law) in the investigated range of fragment sizes, indicating that fragmentation of experimental samples reflects a scale-invariant mechanism. In addition, Df is correlated positively with the potential energy for fragmentation (PEF) while showing a strong influence of the open porosity of the samples. Results obtained in this work indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension of the size distribution of pyroclasts. It emerges fromthis study that fractal dimension may be utilised as a proxy for estimating the explosivity of volcanic eruptions by analysing their natural pyroclastic deposits.en
dc.format.extent279718 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries248 (2006)en
dc.subjectvolcanic fragmentationen
dc.subjectsimulation of eruptionsen
dc.subjectexplosive energyen
dc.subjectpyroclastsen
dc.subjectfragment size distributionen
dc.subjectfractal fragmentation theoryen
dc.title"Explosive Energy" during volcanic eruptions from fractal analysis of pyroclastsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber800-807en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.identifier.doi10.1016/j.epsl.2006.06.033en
dc.relation.references[1] U. Kueppers, B. Scheu, O. Spieler, D.B. Dingwell, Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts, J. Volcanol. Geotherm. Res. 153 (2006) 125–135. [2] O. Spieler, B. Kennedy, U. Kueppers, D.B. Dingwell, B. Scheu, J. Taddeucci, The fragmentation threshold of pyroclastic rocks, EPSL 226 (2004) 139–148. [3] A.R. McBirney, T. Murase, Factors governing the formation of pyroclastic rocks, Bull. Volcanol. 34 (1970) 372–384. [4] D.B. Dingwell, Volcanic dilemma: flow or blow? Science 273 (1996) 1054–1055. [5] M. Alidibirov, D.B. Dingwell, Three fragmentation mechanisms for highly viscous magma under rapid decompression, J. Volcanol. Geotherm. Res. 100 (2000) 413–421. [6] M. Alidibirov, D.B. Dingwell, An experimental facility for investigation of magma fragmentation by rapid decompression, Bull. Volcanol. 58 (1996) 411–416. [7] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1982. [8] D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 1992. [9] G. Korvin, Fractal Models in the Earth Sciences, Elsevier, Amsterdam, 1992. [10] C.G. Sammis, R.H. Osborne, J.L. Anderson, M. Banerdt, P. White, Self-similar cataclasis in the formation of fault gouge, Pure Appl. Geophys. 124 (1986) 191–213. [11] M.K. Hassan, G.J. Rodgers, Models of fragmentation and stochastic fractals, Phys. Lett., A 208 (1995) 95–98. [12] E. Perfect, Fractal models for the fragmentation of rocks and soils: a review, Eng. Geol. 48 (1997) 185–198. [13] H. Millan, M. Gonzalez-Posada, R.M. Benito, Fragmentation fractal dimensions of Vertisol samples: influence of sieving time and soil pre-treatment, Geoderma 109 (2002) 75–83. [14] W. Barnett, Subsidence breccias in kimberlite pipes—an application of fractal analysis, Lithos 76 (2004) 299–316. [15] U. Kueppers, Nature and efficiency of pyroclast generation from porous magma: insights from field investigations and laboratory experiments, PhD dissertation, University (LMU) of Munich (2005), http://edoc.ub.uni-muenchen.de/archive/00004587/. [16] R.A.F. Cas, J.V. Wright, Volcanic Successions: Modern and Ancient, Chapman and Hall, London, 1987, pp. 476–478. [17] J. Korcak, Deux types fondamentaux de distribution statistique, Bull. Inst. Int. Stat. 3 (1938) 295–299. [18] W.K. Brown, K.H. Wohletz, Derivation of the Weibull distribution based on physical principles and its connection to the Rosin– Rammler and lognormal distributions, J. Appl. Phys. 78 (1995) 2758–2763. [19] K.H. Wohletz, W.K. Brown, Particulate Size Distributions and Sequential Fragmentation/Transport Theory, Los Alamos National Laboratory report, 1995 LA-UR 95-0371. [20] B. Zimanowski, R. Büttner, V. Lorenz, H.G. Häfele, Fragmentation of basaltic melt in the course of explosive volcanism, J. Geophys. Res. 102 (B1) (1997) 803–814. [21] J. Taddeucci, D.M. Palladino, Particle size–density relationships in pyroclastic deposits: inference for emplacement processes, Bull. Volcanol. 64 (2002) 273–284. [22] A. Maria, S. Carey, Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res. 107 (B11) (2002), doi:10.1029/2001JB000822. [23] D. Perugini, G. Poli, N. Prosperini, Morphometric analysis of magmatic enclaves: a tool for understanding magma vesiculation and ascent, Lithos 61 (2002) 225–235. [24] I.N. Bindemann, Fragmentation phenomena in populations of magmatic crystals, Am. Mineral. 90 (2005) 801–1815.en
dc.description.fulltextopenen
dc.contributor.authorKueppers, U.en
dc.contributor.authorPerugini, D.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversità di Perugiaen
dc.contributor.departmentUniversity of Munich (LMU)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDept. of Earth and Environmental Sciences, Ludwig-Maximilians Universit¨at, Munich, Germany-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.orcid0000-0003-2815-1444-
crisitem.author.orcid0000-0002-2888-6128-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
subm revised to epsl_Kueppers et al_fractals.pdf273.16 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

56
checked on Feb 10, 2021

Page view(s) 50

178
checked on Apr 24, 2024

Download(s) 5

799
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric