Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16139
DC FieldValueLanguage
dc.date.accessioned2023-02-07T09:46:53Z-
dc.date.available2023-02-07T09:46:53Z-
dc.date.issued2022-12-
dc.identifier.urihttp://hdl.handle.net/2122/16139-
dc.description.abstractFault zone architecture and its internal structural variability play a pivotal role in earthquake mechanics, by controlling, for instance, the nucleation, propagation and arrest of individual seismic ruptures and the evolution in space and time of foreshock and aftershock seismic sequences. Nevertheless, the along-strike architectural variability of crustal-scale seismogenic sources over regional distances is still poorly investigated. Here, we describe the architectural variability of the >40-km-long exhumed, seismogenic Bolfin Fault Zone (BFZ) of the intra-arc Atacama Fault System (Northern Chile). The BFZ cuts through plutonic rocks of the Mesozoic Coastal Cordillera and was seismically active at 5–7 km depth and ≤ 300 °C in a fluid-rich environment. The BFZ includes multiple altered fault core strands, consisting of chlorite-rich cataclasites-ultracataclasites and pseudotachylytes, surrounded by chlorite-rich protobreccias to protocataclasites over a zone up to 60-m-thick. These fault rocks are embedded within a low-strain damage zone, up to 150-m-thick, which includes strongly altered volumes of dilatational hydrothermal breccias and clusters of epidote-rich fault-vein networks at the linkage of the BFZ with subsidiary faults. The strong hydrothermal alteration of rocks along both the fault core and the damage zone attests to an extensive percolation of fluids across all the elements of the structural network during the activity of the entire fault zone. In particular, we interpret the epidote-rich fault-vein networks and associated breccias as an exhumed example of upper-crustal fluid-driven earthquake swarms, similar to the presently active intra-arc Liquiñe-Ofqui Fault System (Southern Andean Volcanic Zone, Chile).en_US
dc.description.sponsorshipEuropean Research Council Consolidator Grant Project (NOFEAR) No 614705en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofJournal of Structural Geologyen_US
dc.relation.ispartofseries/165 (2022)en_US
dc.subjectAtacama fault systemen_US
dc.subjectEarthquakesen_US
dc.subjectFault structureen_US
dc.subjectFault zone rocksen_US
dc.subjectFluid-driven seismicityen_US
dc.subjectSeismogenic faultsen_US
dc.titleAlong-strike architectural variability of an exhumed crustal-scale seismogenic fault (Bolfin Fault Zone, Atacama Fault System, Chile)en_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber104745en_US
dc.subject.INGV04. Solid Earthen_US
dc.identifier.doi10.1016/j.jsg.2022.104745en_US
dc.relation.referencesAllam, A.A., Ben-Zion, Y., 2012. Seismic velocity structures in the southern California plate-boundary environment from double-difference tomography. Geophys. J. Int. 190, 1181–1196. https://doi.org/10.1111/j.1365-246X.2012.05544.x Allmendinger, R.W., Cardozo, N., Fisher, D.M., 2011. Structural Geology Algorithms: Vectors & Tensors. Cambridge University Press, Cambridge, England. Arabasz, W.J.J., 1971. Geological and geophysical studies of the Atacama fault zone in northern Chile. PhD thesis, California Institute of Technology, Pasadena. Arancibia, G., Fujita, K., Hoshino, K., Mitchell, T.M., Cembrano, J., Gomila, R., Morata, D., Faulkner, D.R., Rempe, M., 2014. Hydrothermal alteration in an exhumed crustal fault zone: Testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics 623, 147–168. https://doi.org/10.1016/j.tecto.2014.03.024 Bedford, J.D., Faulkner, D.R., Lapusta, N., 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability. Nat. Commun. 13, 326. https://doi.org/10.1038/s41467-022-27998-2 Ben-Zion, Y., 1998. Properties of seismic fault zone waves and their utility for imaging low-velocity structures. J. Geophys. Res. Solid Earth 103, 12567–12585. https://doi.org/10.1029/98JB00768 Ben-Zion, Y., Sammis, C.G., 2003. Characterization of Fault Zones. Pure Appl. Geophys. 160, 677–715. https://doi.org/10.1007/PL00012554 Berger, A., Herwegh, M., 2019. Cockade structures as a paleo-earthquake proxy in upper crustal hydrothermal systems. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-45488-2 Billi, A., Salvini, F., Storti, F., 2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. J. Struct. Geol. 25, 1779–1794. https://doi.org/10.1016/S0191-8141(03)00037-3 Bistacchi, A., Massironi, M., Menegon, L., 2010. Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps). J. Struct. Geol. 32, 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003 Boatwright, J., Cocco, M., 1996. Frictional constraints on crustal faulting. J. Geophys. Res. Solid Earth 101, 13895–13909. https://doi.org/10.1029/96JB00405 Brown, M., Diàz, F., Grocott, J., 1993. Displacement history of the Atacama fault system 25°00’S-27°00’S, northern Chile. Geol. Soc. Am. Bull. 102, 1165–1174. Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24, 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Modeling crustal deformation and rupture processes related to upwelling of deep CO 2 -rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. J. Geophys. Res. 114, B10304. https://doi.org/10.1029/2009JB006398 Cardozo, N., Allmendinger, R.W., 2013. Spherical Projections with OSXStereonet. Comput. Geosci. 51, 193–205. https://doi.org/10.1016/j.cageo.2012.07.021 Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., Herrera, V., 2005. Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics 400, 105–125. https://doi.org/10.1016/j.tecto.2005.02.012 Cembrano, J., Hervé, F., Lavenu, A., 1996. The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259, 55–66. https://doi.org/10.1016/0040-1951(95)00066-6 Cembrano, J., Lavenu, A., Reynolds, P., Arancibia, G., López, G., Sanhueza, A., 2002. Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354, 289–314. https://doi.org/10.1016/S0040-1951(02)00388-8 Cheng, Y., Wang, X., Zhan, Z., Ben‐Zion, Y., 2021. Isotropic Source Components of Events in the 2019 Ridgecrest, California, Earthquake Sequence. Geophys. Res. Lett. 48. https://doi.org/10.1029/2021GL094515 Chester, F.M., Evans, J.P., Biegel, R.L., 1993. Internal structure and weakening mechanisms of the San Andreas Fault. J. Geophys. Res. Solid Earth 98, 771–786. https://doi.org/10.1029/92JB01866 Chester, F.M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Remitti, F., Moore, J.C., Toy, V., Wolfson-Schwehr, M., Bose, S., Kameda, J., Mori, J.J., Brodsky, E.E., Eguchi, N., Toczko, S., 2013. Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake. Science (80-. ). 342, 1208–1211. https://doi.org/10.1126/science.1243719 Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., De Gori, P., 2011. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res. Solid Earth 116, 1–25. https://doi.org/10.1029/2011JB008352 Choi, J.-H., Edwards, P., Ko, K., Kim, Y.-S., 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Rev. 152, 70–87. https://doi.org/https://doi.org/10.1016/j.earscirev.2015.11.006 Chu, S.X., Tsai, V.C., Trugman, D.T., Hirth, G., 2021. Fault Interactions Enhance High‐Frequency Earthquake Radiation. Geophys. Res. Lett. 48. https://doi.org/10.1029/2021GL095271 Collettini, C., Barchi, M.R., De Paola, N., Trippetta, F., Tinti, E., 2022. Rock and fault rheology explain differences between on fault and distributed seismicity. Nat. Commun. 13, 5627. https://doi.org/10.1038/s41467-022-33373-y Coppola, M., Correale, A., Barberio, M.D., Billi, A., Cavallo, A., Fondriest, M., Nazzari, M., Paonita, A., Romano, C., Stagno, V., Viti, C., Vona, A., 2021. Meso- to nano-scale evidence of fluid-assisted co-seismic slip along the normal Mt. Morrone Fault, Italy: Implications for earthquake hydrogeochemical precursors. Earth Planet. Sci. Lett. 568, 117010. https://doi.org/10.1016/j.epsl.2021.117010 Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. J. Struct. Geol. 21, 995–1001. https://doi.org/10.1016/S0191-8141(99)00046-2 Cox, S.F., 2020. Chapter 2: The Dynamics of Permeability Enhancement and Fluid Flow in Overpressured, Fracture-Controlled Hydrothermal Systems, in: Applied Structural Geology of Ore-Forming Hydrothermal Systems. Society of Economic Geologists, pp. 25–82. https://doi.org/10.5382/rev.21.02 Cox, S.F., 2016. Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Econ. Geol. 111, 559–587. https://doi.org/10.2113/econgeo.111.3.559 Cox, S.F., Munroe, S.M., 2016. Breccia formation by particle fluidization in fault zones: Implications for transitory, rupture-controlled fluid flow regimes in hydrothermal systems. Am. J. Sci. 316, 241–278. https://doi.org/10.2475/03.2016.02 Dal Zilio, L., van Dinther, Y., Gerya, T., Avouac, J.-P., 2019. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat. Commun. 10, 48. https://doi.org/10.1038/s41467-018-07874-8 Delogkos, E., Manzocchi, T., Childs, C., Camanni, G., Roche, V., 2020. The 3D structure of a normal fault from multiple outcrop observations. J. Struct. Geol. 136, 104009. https://doi.org/10.1016/j.jsg.2020.104009 Dempsey, E.D., Holdsworth, R.E., Imber, J., Bistacchi, A., Di Toro, G., 2014. A geological explanation for intraplate earthquake clustering complexity: The zeolite-bearing fault/fracture networks in the Adamello Massif (Southern Italian Alps). J. Struct. Geol. 66, 58–74. https://doi.org/10.1016/j.jsg.2014.04.009 Demurtas, M., Fondriest, M., Balsamo, F., Clemenzi, L., Storti, F., Bistacchi, A., Di Toro, G., 2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). J. Struct. Geol. 90, 185–206. https://doi.org/10.1016/j.jsg.2016.08.004 Di Stefano, R., Chiarabba, C., Chiaraluce, L., Cocco, M., De Gori, P., Piccinini, D., Valoroso, L., 2011. Fault zone properties affecting the rupture evolution of the 2009 (M w 6.1) L’Aquila earthquake (central Italy): Insights from seismic tomography. Geophys. Res. Lett. 38, n/a-n/a. https://doi.org/10.1029/2011GL047365 Di Toro, G., Pennacchioni, G., 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics 402, 55–80. https://doi.org/10.1016/j.tecto.2004.12.036 Di Toro, G., Pennacchioni, G., 2004. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps). J. Struct. Geol. 26, 1783–1801. https://doi.org/10.1016/j.jsg.2004.03.001 Domagala, J.P., Escribano, J., De La Cruz, R., Saldias, J., Joquera, R., 2016. Cartas Blanco Encalada y Pampa Remiendos, Region de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 187-188 mapa escala 1:100.000. Santiago. Ellsworth, W.L., 2013. Injection-Induced Earthquakes. Science (80-. ). 341. https://doi.org/10.1126/science.1225942 Espinoza, M., Contreras, J.P., Jorquera, R., De La Cruz, R., Kraus, S., Ramirez, C., Naranjo, J., 2014. Carta Cerro del Pingo, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 169, 1 mapa escala 1:100.000. Santiago. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009 Faulkner, D.R., Lewis, A.C., Rutter, E.H., 2003. On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in southeastern Spain. Tectonophysics 367, 235–251. https://doi.org/10.1016/S0040-1951(03)00134-3 Faulkner, D.R., Mitchell, T.M., Jensen, E., Cembrano, J., 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. J. Geophys. Res. Solid Earth 116, 1–11. https://doi.org/10.1029/2010JB007788 Faulkner, D.R., Mitchell, T.M., Rutter, E.H., Cembrano, J., 2008. On the structure and mechanical properties of large strike-slip faults. Geol. Soc. Spec. Publ. 299, 139–150. https://doi.org/10.1144/SP299.9 Fischer, T., Horálek, J., Hrubcová, P., Vavryčuk, V., Bräuer, K., Kämpf, H., 2014. Intra-continental earthquake swarms in West-Bohemia and Vogtland: A review. Tectonophysics 611, 1–27. https://doi.org/10.1016/j.tecto.2013.11.001 Fondriest, M., Balsamo, F., Bistacchi, A., Clemenzi, L., Demurtas, M., Storti, F., Di Toro, G., 2020a. Structural Complexity and Mechanics of a Shallow Crustal Seismogenic Source (Vado di Corno Fault Zone, Italy). J. Geophys. Res. Solid Earth 125. https://doi.org/10.1029/2019JB018926 Fondriest, M., Mecklenburgh, J., Passelegue, F.X., Artioli, G., Nestola, F., Spagnuolo, E., Rempe, M., Di Toro, G., 2020b. Pseudotachylyte Alteration and the Rapid Fade of Earthquake Scars From the Geological Record. Geophys. Res. Lett. 47. https://doi.org/10.1029/2020GL090020 Gomila, R., Arancibia, G., Mitchell, T.M., Cembrano, J.M., Faulkner, D.R., 2016. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system. J. Struct. Geol. 83, 103–120. https://doi.org/10.1016/j.jsg.2015.12.002 Gomila, R., Fondriest, M., Jensen, E., Spagnuolo, E., Masoch, S., Mitchell, T.M., Magnarini, G., Bistacchi, A., Mittempergher, S., Faulkner, D., Cembrano, J., Di Toro, G., 2021. Frictional Melting in Hydrothermal Fluid‐Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile). Geochemistry, Geophys. Geosystems 22. https://doi.org/10.1029/2021GC009743 González, G., 1999. Mecanismo y profundidad de emplazamiento del Pluton de Cerro Cristales, Cordillera de la Costa, Antofagasta, Chile. Rev. Geol. Chile 26, 43–66. González, G., Cembrano, J., Carrizo, D., Macci, A., Schneider, H., 2003. The link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, northern Chile. J. South Am. Earth Sci. 16, 321–342. https://doi.org/10.1016/S0895-9811(03)00100-7 González, G., Dunai, T., Carrizo, D., Allmendinger, R., 2006. Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics 25, 1–15. https://doi.org/10.1029/2005TC001846 González, G., Niemeyer, H., 2005. Cartas Antofagasta y Punta Tetas, Region de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 89 mapa escala 1:100.000. Santiago. Griffith, W.A., Di Toro, G., Pennacchioni, G., Pollard, D.D., 2008. Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra Nevada: Physical constraints for small seismic slip events. J. Struct. Geol. 30, 1086–1094. https://doi.org/10.1016/j.jsg.2008.05.003 Grocott, J., 1981. Fracture geometry of pseudotachylyte generation zones: a study of shear fractures formed during seismic events. J. Struct. Geol. 3, 169–178. https://doi.org/10.1016/0191-8141(81)90012-2 Hale, D., 2013. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics 78, O33–O43. https://doi.org/10.1190/geo2012-0331.1 Hauksson, E., 2010. Spatial Separation of Large Earthquakes, Aftershocks, and Background Seismicity: Analysis of Interseismic and Coseismic Seismicity Patterns in Southern California. Pure Appl. Geophys. 167, 979–997. https://doi.org/10.1007/s00024-010-0083-3 Healy, J.H., Rubey, W.W., Griggs, D.T., Raleigh, C.B., 1968. The Denver Earthquakes. Science (80-. ). 161, 1301–1310. https://doi.org/10.1126/science.161.3848.1301 Herrera, V., Cembrano, J., Olivares, V., Kojima, S., Arancibia, G., 2005. Precipitación por despresurización y ebullición en vetas hospedadas en un dúplex de rumbo extensional: Evidencias microestructurales y microtermométricas. Rev. Geol. Chile 32, 207–227. Hervé, F., 1987. Movimiento normal de la falla Paposo, zona de Falla Atacama, en el Mioceno, Chile. Rev. Geol. Chile 31–36. Hill, D.P., 1977. A model for earthquake swarms. J. Geophys. Res. 82, 1347–1352. https://doi.org/10.1029/JB082i008p01347 Howarth, J.D., Barth, N.C., Fitzsimons, S.J., Richards-Dinger, K., Clark, K.J., Biasi, G.P., Cochran, U.A., Langridge, R.M., Berryman, K.R., Sutherland, R., 2021. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nat. Geosci. https://doi.org/10.1038/s41561-021-00721-4 Jaillard, E., Soler, P., Carlier, G., Mourier, T., 1990. Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. J. Geol. Soc. London. 147, 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009 Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., Arancibia, G., 2011. Development of a self-similar strike-slip duplex system in the Atacama Fault system, Chile. J. Struct. Geol. 33, 1611–1626. https://doi.org/10.1016/j.jsg.2011.09.002 Jensen, E., González, G., Faulkner, D.R., Cembrano, J., Mitchell, T.M., 2019. Fault-fluid interaction in porphyry copper hydrothermal systems: Faulted veins in radomiro Tomic, northern Chile. J. Struct. Geol. 126, 301–317. https://doi.org/10.1016/j.jsg.2019.06.013 Kirkpatrick, J.D., Shipton, Z.K., Evans, J.P., Micklethwaite, S., Lim, S.J., McKillop, P., 2008. Strike-slip fault terminations at seismogenic depths: The structure and kinematics of the Glacier Lakes fault, Sierra Nevada United States. J. Geophys. Res. Solid Earth 113, 1–15. https://doi.org/10.1029/2007JB005311 Legrand, D., Barrientos, S., Bataille, K., Cembrano, J., Pavez, A., 2011. The fluid-driven tectonic swarm of Aysen Fjord, Chile (2007) associated with two earthquakes (Mw=6.1 and Mw=6.2) within the Liquiñe-Ofqui Fault Zone. Cont. Shelf Res. 31, 154–161. https://doi.org/10.1016/j.csr.2010.05.008 Lewis, M.A., Ben-Zion, Y., 2010. Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophys. J. Int. 183, 1579–1595. https://doi.org/10.1111/j.1365-246X.2010.04816.x Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., Liu, D., 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 584, 23–42. https://doi.org/10.1016/j.tecto.2012.08.021 Li, Y.G., Vidale, J.E., Cochran, E.S., 2004. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophys. Res. Lett. 31. https://doi.org/10.1029/2003GL019044 Lockner, D.A., Byerlee, J.D., 1993. How geometrical constraints contribute to the weakness of mature faults. Nature 363, 250–252. https://doi.org/10.1038/363250a0 Lucca, A., Storti, F., Balsamo, F., Clemenzi, L., Fondriest, M., Burgess, R., Di Toro, G., 2019. From Submarine to Subaerial Out‐of‐Sequence Thrusting and Gravity‐Driven Extensional Faulting: Gran Sasso Massif, Central Apennines, Italy. Tectonics 38, 4155–4184. https://doi.org/10.1029/2019TC005783 Magloughlin, J.F., Spray, J.G., 1992. Frictional melting processes and products in geological materials: introduction and discussion. Tectonophysics 204, 197–204. https://doi.org/10.1016/0040-1951(92)90307-R Marchesini, B., Carminati, E., Aldega, L., Mirabella, F., Petrelli, M., Caracausi, A., Barchi, M.R., 2022. Chemical interaction driven by deep fluids in the damage zone of a seismogenic carbonate fault. J. Struct. Geol. 161, 104668. https://doi.org/10.1016/j.jsg.2022.104668 Marrett, R., Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. J. Struct. Geol. 12, 973–986. https://doi.org/10.1016/0191-8141(90)90093-E Masoch, S., Fondriest, M., Preto, N., Secco, M., Di Toro, G., 2019. Seismic cycle recorded in cockade-bearing faults (Col de Teghime, Alpine Corsica). J. Struct. Geol. 129, 103889. https://doi.org/10.1016/j.jsg.2019.103889 Masoch, S., Gomila, R., Fondriest, M., Jensen, E., Mitchell, T., Pennacchioni, G., Cembrano, J., Di Toro, G., 2021. Structural Evolution of a Crustal‐Scale Seismogenic Fault in a Magmatic Arc: The Bolfin Fault Zone (Atacama Fault System). Tectonics 40. https://doi.org/10.1029/2021TC006818 Mauldon, M., Dershowitz, W., 2000. A multi-dimensional system of fracture abundance measures. Geol. Soc. Am. Abstr. with Programs 32, A474. Mesimeri, M., Pankow, K.L., Baker, B., Hale, J.M., 2021. Episodic Earthquake Swarms in the Mineral Mountains, Utah Driven by the Roosevelt Hydrothermal System. J. Geophys. Res. Solid Earth 126. https://doi.org/10.1029/2021JB021659 Mitchell, T.M., Faulkner, D.R., 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31, 802–816. https://doi.org/10.1016/j.jsg.2009.05.002 Mitchell, T.M., Toy, V., Di Toro, G., Renner, J., Sibson, R.H., 2016. Fault welding by pseudotachylyte formation. Geology 44, 1059–1062. https://doi.org/10.1130/G38373.1 Mittempergher, S., Dallai, L., Pennacchioni, G., Renard, F., Di Toro, G., 2014. Origin of hydrous fluids at seismogenic depth: Constraints from natural and experimental fault rocks. Earth Planet. Sci. Lett. 385, 97–109. https://doi.org/10.1016/j.epsl.2013.10.027 Mittempergher, S., Pennacchioni, G., Di Toro, G., 2009. The effects of fault orientation and fluid infiltration on fault rock assemblages at seismogenic depths. J. Struct. Geol. 31, 1511–1524. https://doi.org/10.1016/j.jsg.2009.09.003 Mittempergher, S., Zanchi, A., Zanchetta, S., Fumagalli, M., Gukov, K., Bistacchi, A., 2021. Fault reactivation and propagation in the northern Adamello pluton: The structure and kinematics of a kilometre-scale seismogenic source. Tectonophysics 228790. https://doi.org/10.1016/j.tecto.2021.228790 Mogi, K., 1963. Some Discusions on Aftershocks, Foreshocks and Earthquake Swarms: The Fracture of a Semi-Infinite Body Caused by Inner Stress Origin and Its Relation to the Earthquake Phenomena (3rd Paper). Bull. Earthq. Res. Inst. 41, 615–658. Olivares, V., Herrera, V., Cembrano, J., Arancibia, G., Reyes, N., Faulkner, D., 2010. Tectonic significance and hydrothermal fluid migration within a strike-slip duplex fault-vein network: An example from the Atacama Fault System. Andean Geol. Parada, M.A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., Aguirre, L., Féraud, G., Espinoza, F., Moreno, H., Figueroa, O., Muñoz, J., Rosa, B., Vásquez, T., Stern, C.R., 2007. Andean magmatism, in: Moreno, T., Gibbons, W. (Eds.), The Geology of Chile. The Geological Society of London, pp. 115–146. https://doi.org/10.1144/GOCH.4 Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., Villa, I.M., 2006. Brittle-ductile-brittle deformation during cooling of tonalite (Adamello, Southern Italian Alps). Tectonophysics 427, 171–197. https://doi.org/10.1016/j.tecto.2006.05.019 Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., Gaudemer, Y., 2016. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. J. Geophys. Res. Solid Earth 121, 3666–3685. https://doi.org/10.1002/2015JB012671 Pischiutta, M., Fondriest, M., Demurtas, M., Magnoni, F., Di Toro, G., Rovelli, A., 2017. Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy). Earth Planet. Sci. Lett. 471, 10–18. https://doi.org/10.1016/j.epsl.2017.04.017 Rempe, M., Mitchell, T.M., Renner, J., Smith, S.A.F., Bistacchi, A., Di Toro, G., 2018. The Relationship Between Microfracture Damage and the Physical Properties of Fault-Related Rocks: The Gole Larghe Fault Zone, Italian Southern Alps. J. Geophys. Res. Solid Earth 123, 7661–7687. https://doi.org/10.1029/2018JB015900 Ross, Z.E., Cochran, E.S., Trugman, D.T., Smith, J.D., 2020. 3D fault architecture controls the dynamism of earthquake swarms. Science (80-. ). 368, 1357–1361. https://doi.org/10.1126/science.abb0779 Ross, Z.E., Hauksson, E., Ben-Zion, Y., 2017. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Sci. Adv. 3, e1601946. https://doi.org/10.1126/sciadv.1601946 Rowe, C.D., Griffith, W.A., 2015. Do faults preserve a record of seismic slip: A second opinion. J. Struct. Geol. https://doi.org/10.1016/j.jsg.2015.06.006 Ruthven, R., Singleton, J., Seymour, N., Gomila, R., Arancibia, G., Stockli, D.F., Ridley, J., Magloughlin, J., 2020. The geometry, kinematics, and timing of deformation along the southern segment of the Paposo fault zone, Atacama fault system, northern Chile. J. South Am. Earth Sci. 97, 102355. https://doi.org/10.1016/j.jsames.2019.102355 Scheuber, E., Andriessen, P.A.M., 1990. The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J. Struct. Geol. 12, 243–257. https://doi.org/10.1016/0191-8141(90)90008-M Scheuber, E., González, G., 1999. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of crustal deformation along a convergent plate boundary. Tectonics 18, 895–910. https://doi.org/10.1029/1999TC900024 Scheuber, E., Hammerschmidt, K., Friedrichsen, H., 1995. 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: the age of deformation. Tectonophysics 250, 61–87. https://doi.org/10.1016/0040-1951(95)00044-8 Scholz, C.H., 2019. The Mechanics of Earthquakes and Faulting, The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/9781316681473 SERNAGEOMIN, 2003. Mapa Geológico de Chile: versión digital. Base geológica escala 1:1.000.000. Seymour, N.M., Singleton, J.S., Gomila, R., Mavor, S.P., Heuser, G., Arancibia, G., Williams, S., Stockli, D.F., 2021. Magnitude, timing, and rate of slip along the Atacama fault system, northern Chile: implications for Early Cretaceous slip partitioning and plate convergence. J. Geol. Soc. London. jgs2020-142. https://doi.org/10.1144/jgs2020-142 Seymour, N.M., Singleton, J.S., Mavor, S.P., Gomila, R., Stockli, D.F., Heuser, G., Arancibia, G., 2020. The Relationship Between Magmatism and Deformation Along the Intra‐arc Strike‐Slip Atacama Fault System, Northern Chile. Tectonics 39, e2019TC005702. https://doi.org/10.1029/2019TC005702 Share, P.-E., Castro, R.R., Vidal-Villegas, J.A., Mendoza, L., Ben-Zion, Y., 2021. High-resolution seismic imaging of the plate boundary in northern Baja California and southern California using double-pair double-difference tomography. Earth Planet. Sci. Lett. 568, 117004. https://doi.org/10.1016/j.epsl.2021.117004 Shelly, D.R., 2020. A High-Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismol. Res. Lett. 91, 1971–1978. https://doi.org/10.1785/0220190309 Shelly, D.R., Ellsworth, W.L., Hill, D.P., 2016. Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. J. Geophys. Res. Solid Earth 121, 1776–1795. https://doi.org/10.1002/2015JB012719 Shelly, D.R., Hill, D.P., Massin, F., Farrell, J., Smith, R.B., Taira, T., 2013a. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. J. Geophys. Res. Solid Earth 118, 4872–4886. https://doi.org/10.1002/jgrb.50362 Shelly, D.R., Moran, S.C., Thelen, W.A., 2013b. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophys. Res. Lett. 40, 1506–1512. https://doi.org/10.1002/grl.50354 Shelly, D.R., Taira, T., Prejean, S.G., Hill, D.P., Dreger, D.S., 2015. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophys. Res. Lett. 42, 5803–5812. https://doi.org/10.1002/2015GL064325 Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes. J. Struct. Geol. 18, 1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6 Sibson, R.H., 1994. Crustal stress, faulting and fluid flow. Geol. Soc. London, Spec. Publ. 78, 69–84. https://doi.org/10.1144/GSL.SP.1994.078.01.07 Sibson, R.H., 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15, 701. https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2 Sibson, R H, 1986. Earthquakes and Rock Deformation in Crustal Fault Zones. Annu. Rev. Earth Planet. Sci. 14, 149–175. https://doi.org/10.1146/annurev.ea.14.050186.001053 Sibson, R.H., 1986. Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure Appl. Geophys. PAGEOPH 124, 159–175. https://doi.org/10.1007/BF00875724 Sibson, R.H., 1985. Stopping of earthquake ruptures at dilational fault jogs. Nature 316, 248–251. https://doi.org/10.1038/316248a0 Sibson, R.H., 1981. Fluid Flow Accompanying Faulting: Field Evidence and Models, in: Simpson, D.W., Richards, P.G. (Eds.), Earthquake Prediction: An International Review, Volume 4. pp. 593–603. https://doi.org/10.1029/ME004p0593 Sibson, R.H., 1977. Fault rocks and fault mechanisms. J. Geol. Soc. London. 133, 191 LP – 213. https://doi.org/10.1144/gsjgs.133.3.0191 Sibson, R.H., 1975. Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophys. J. R. Astron. Soc. 43, 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x Smith, S.A.F., Bistacchi, A., Mitchell, T.M., Mittempergher, S., Di Toro, G., 2013. The structure of an exhumed intraplate seismogenic fault in crystalline basement. Tectonophysics 599, 29–44. https://doi.org/10.1016/j.tecto.2013.03.031 Snoke, A.W., Tullis, J., Todd, V.R., 1998. Fault-Related Rocks: A Photographic Atlas. Princeton University Press. https://doi.org/10.2307/j.ctt7zvg0k Stierle, E., Bohnhoff, M., Vavryčuk, V., 2014. Resolution of non-double-couple components in the seismic moment tensor using regional networks—II: application to aftershocks of the 1999 Mw 7.4 Izmit earthquake. Geophys. J. Int. 196, 1878–1888. https://doi.org/10.1093/gji/ggt503 Sutherland, R., Toy, V.G., Townend, J., Cox, S.C., Eccles, J.D., Faulkner, D.R., Prior, D.J., Norris, R.J., Mariani, E., Boulton, C., Carpenter, B.M., Menzies, C.D., Little, T.A., Hasting, M., De Pascale, G.P., Langridge, R.M., Scott, H.R., Lindroos, Z.R., Fleming, B., Kopf, A.J., 2012. Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology 40, 1143–1146. https://doi.org/10.1130/G33614.1 Swanson, M.T., 2006. Pseudotachylyte-bearing strike-slip faults in mylonitic host rocks, Fort Foster Brittle Zone, Kittery, Maine, in: Abercrombie, R., McGarr, A., Di Toro, G., Kanamori, H. (Eds.), Earthquakes: Radiated Energy and the Physics of Faulting. American Geophysical Union (AGU), pp. 167–179. https://doi.org/10.1029/170GM17 Swanson, M.T., 1992. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics 204, 223–242. https://doi.org/10.1016/0040-1951(92)90309-T Swanson, M.T., 1988. Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. J. Struct. Geol. 10, 813–828. https://doi.org/10.1016/0191-8141(88)90097-1 Tesei, T., Collettini, C., Viti, C., Barchi, M.R., 2013. Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate-bearing thrusts. J. Struct. Geol. 55, 167–181. https://doi.org/10.1016/j.jsg.2013.07.007 Toy, V.G., Boulton, C.J., Sutherland, R., Townend, J., Norris, R.J., Little, T.A., Prior, D.J., Mariani, E., Faulkner, D., Menzies, C.D., Scott, H., Carpenter, B.M., 2015. Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling. Lithosphere 7, 155–173. https://doi.org/10.1130/L395.1 Unsworth, M.J., Malin, P.E., Egbert, G.D., Booker, J.R., 1997. Internal structure of the San Andreas fault at Parkfield, California. Geology 25, 359–362. https://doi.org/10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2 Valoroso, L., Chiaraluce, L., Collettini, C., 2014. Earthquakes and fault zone structure. Geology 42, 343–346. https://doi.org/10.1130/G35071.1 Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., Waldhauser, F., 2013. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. J. Geophys. Res. Solid Earth 118, 1156–1176. https://doi.org/10.1002/jgrb.50130 Vavryčuk, V., 2002. Non-double-couple earthquakes of 1997 January in West Bohemia, Czech Republic: evidence of tensile faulting. Geophys. J. Int. 149, 364–373. https://doi.org/10.1046/j.1365-246X.2002.01654.x Veloso, E.E., Gomila, R., Cembrano, J., González, R., Jensen, E., Arancibia, G., 2015. Stress fields recorded on large-scale strike-slip fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction. Tectonophysics 664, 244–255. https://doi.org/10.1016/j.tecto.2015.09.022 Viegas, G., Abercrombie, R.E., Kim, W.-Y., 2010. The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget. J. Geophys. Res. 115, B07310. https://doi.org/10.1029/2009JB006799 Wedmore, L.N.J., Williams, J.N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., Willoughby, J., Mdala, H., Adams, B.A., 2020. Structural inheritance and border fault reactivation during active early-stage rifting along the Thyolo fault, Malawi. J. Struct. Geol. 139, 104097. https://doi.org/10.1016/j.jsg.2020.104097 Wesnousky, S.G., 2006. Predicting the endpoints of earthquake ruptures. Nature 444, 358–360. https://doi.org/10.1038/nature05275 Wesnousky, S.G., 1988. Seismological and structural evolution of strike-slip faults. Nature 335, 340–343. https://doi.org/10.1038/335340a0 Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185–187. Wibberley, C.A.J., Yielding, G., Di Toro, G., 2008. Recent advances in the understanding of fault zone internal structure: A review. Geol. Soc. Spec. Publ. 299, 5–33. https://doi.org/10.1144/SP299.2 Williams, J.N., Toy, V.G., Massiot, C., McNamara, D.D., Smith, S.A.F., Mills, S., 2018. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault. Solid Earth 9, 469–489. https://doi.org/10.5194/se-9-469-2018 Williams, J.N., Toy, V.G., Massiot, C., McNamara, D.D., Wang, T., 2016. Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand. J. Struct. Geol. 90, 76–94. https://doi.org/10.1016/j.jsg.2016.07.006 Williams, J.N., Toy, V.G., Smith, S.A.F., Boulton, C., 2017. Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault. J. Struct. Geol. 103, 151–166. https://doi.org/10.1016/j.jsg.2017.09.011 Wollherr, S., Gabriel, A., Mai, P.M., 2019. Landers 1992 “Reloaded”: Integrative Dynamic Earthquake Rupture Modeling. J. Geophys. Res. Solid Earth 124, 6666–6702. https://doi.org/10.1029/2018JB016355 Woodcock, N.H., Dickson, J.A.D., Tarasewics, J.P.T., 2007. Transient permeability and reseal hardening in fault zones: Evidence from dilation breccia textures. Geol. Soc. Spec. Publ. 270, 43–53. https://doi.org/10.1144/GSL.SP.2007.270.01.03 Woodcock, N.H., Mort, K., 2008. Classification of fault breccias and related fault rocks. Geol. Mag. 145, 435–440. https://doi.org/10.1017/S0016756808004883 Ye, L., Lay, T., Kanamori, H., 2012. Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (M w 7.6) sequence. Geophys. Res. Lett. 39, 2012GL054164. https://doi.org/10.1029/2012GL054164 Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., Yoshida, A., 2011. Fluid-induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan. J. Geophys. Res. 116, B04308. https://doi.org/10.1029/2010JB008036 Zigone, D., Ben-Zion, Y., Campillo, M., Roux, P., 2015. Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure Appl. Geophys. 172, 1007–1032. https://doi.org/10.1007/s00024-014-0872-1 Zoback, M., Hickman, S., Ellsworth, W., 2011. Scientific Drilling Into the San Andreas Fault Zone - An Overview of SAFOD’s First Five Years. Sci. Drill. https://doi.org/10.2204/iodp.sd.11.02.2011en_US
dc.description.obiettivoSpecifico3T. Fisica dei terremoti e Sorgente Sismicaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0191-8141en_US
dc.contributor.authorMasoch, Simone-
dc.contributor.authorFondriest, Michele-
dc.contributor.authorGomila, Rodrigo-
dc.contributor.authorJensen, Erik-
dc.contributor.authorMitchell, Thomas M.-
dc.contributor.authorCembrano, Jose-
dc.contributor.authorPennacchioni, Giorgio-
dc.contributor.authorDi Toro, Giulio-
dc.contributor.departmentDipartimento di Geoscienze, Università degli Studi di Padova, Padua, ITALYen_US
dc.contributor.departmentInstitut de Sciences de la Terre (ISTerre), Université Grenoble-Alpes, Grenoble, FRANCEen_US
dc.contributor.departmentDipartimento di Geoscienze, Università degli Studi di Padova, Padua, ITALYen_US
dc.contributor.departmentNational Research Center for Integrated Natural Disaster Management (CIGIDEN), Santiago CHILEen_US
dc.contributor.departmentDepartment of Earth Sciences, University College London, London, UNITED KINGDOMen_US
dc.contributor.departmentDepartamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Santiago, CHILEen_US
dc.contributor.departmentDipartimento di Geoscienze, Università degli Studi di Padova, Padua, ITALYen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextembargo_20241019-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy-
crisitem.author.deptDipartimento di Geoscienze, Università di Padova, Padova, IT-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9976-9423-
crisitem.author.orcid0000-0001-5807-2769-
crisitem.author.orcid0000-0003-0790-6270-
crisitem.author.orcid0000-0003-4247-8259-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Masoch_DiToro_et_al_JSG_2022_accepted.pdfPaper accepted27.71 MBAdobe PDFEmbargoed until October 19, 2024
Show simple item record

Page view(s)

34
checked on Apr 24, 2024

Download(s)

1
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric