Options
Villani, Fabio
Loading...
Preferred name
Villani, Fabio
Email
fabio.villani@ingv.it
Staff
staff
ORCID
Scopus Author ID
7102291587
81 results
Now showing 1 - 10 of 81
- PublicationOpen AccessAssessing Shallow Soft Deposits through Near-Surface Geophysics and UAV-SfM: Application in Pocket Beaches Environments(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; This study employs a multimethod approach to investigate the sediment distribution in two pocket beaches, Ramla Beach and Mellieha S Beach, in Malta. Both study sites were digitally reconstructed using unmanned aerial vehicle (UAV) photogrammetry. For each case, an ERT and a dense network of ambient seismic noise measurements processed through a horizontal-to-vertical spectral ratio (HVSR) technique were acquired. Electrical resistivity tomography (ERT) analysis enables the estimation of sediment thickness in each beach. HVSR analysis revealed peaks related to beach sediments overlying limestone rocks in both sites and also indicated a deeper stratigraphic contact in Mellieha S Beach. Based on ERT measurements, sediment thickness is calculated for each HVSR measurement. Interpolation of results allows for bedrock surface modelling in each case study, and when combined with digital terrain models (DTMs) derived from photogrammetric models, sediment volumes are estimated for each site. The geometry of this surface is analyzed from a geological perspective, showing structural control of sediment distribution due to a normal fault in Mellieha S Beach and stratigraphic control facilitated by a highly erodible surface in Ramla Beach. The results emphasize the importance of adopting a three-dimensional perspective in coastal studies for precise sediment volume characterization and a deeper understanding of pocket beach dynamics. This practical multimethod approach presented here offers valuable tools for future coastal research and effective coastal management, facilitating informed decision making amidst the growing vulnerability of coastal zones to climate change impacts.75 19 - PublicationOpen AccessHigh-resolution geophysical investigations in the central Apennines seismic belt (Italy): Results from the Campo Felice tectonic basin(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Campo Felice basin, in the central Apennines seismic belt (Italy), developed in the hangingwall of a 30 km-long system of NW-trending normal faults with Holocene paleoseismic activity and potential sources of M 6–7 earthquakes. We provide the first subsurface images of a key portion of the basin bounded by the Mt. Cefalone fault along two intersecting profiles trending NNE-SSW (CF-Dip, 1195 m-long) and WNW-ESE (CF-Strike, 1315-m long). We combined high-resolution depth-migrated reflection sections with P-wave velocity and electrical resistivity tomography models. CF-Dip profile displays a wedge-like syn-tectonic sedimentary sequence of alluvial and glacial deposits with Vp ∼ 2500–3000 m/s and resistivity > 500 Ωm in the hangingwall of Mt. Cefalone fault, overlying a high-Vp (>4000 m/s) limestone bedrock ∼ 300 m deep. The whole sequence displays reflectors truncated by the Mt. Cefalone fault zone and subsidiary antithetic faults. CF-Strike profile, tied to three 80–110 m-deep boreholes, shows a thick fluvio-lacustrine sequence with low-Vp (<2000 m/s) and low resistivity (<100 Ωm), and a bedrock that deepens to the southeast (>450 m). Single-station ambient noise measurements display Horizontal to Vertical Spectral Ratios with peaks at ∼1 Hz, decreasing to ∼0.8 Hz to the southeast in agreement with the bedrock deepening indicated by seismic profiling. According to our results, the Campo Felice basin is a deep asymmetric half-graben controlled by faulting whose activity likely started before the Middle Pleistocene. Our minimum displacement estimate accrued in the past 0.5 Ma by the Mt. Cefalone fault is in the range of ∼100–250 m.371 26 - PublicationOpen AccessActive fault detection and characterization by ultrashallow seismic imaging: A case study from the 2016 Mw 6.5 central Italy earthquake(2023-02-17)
; ; ; ; ; ; ; ; ; We present the first high-resolution ultrashallow seismic image of a normal fault segment that ruptured the surface during the Mw 6.5 2016 Norcia earthquake (central Italy). This is the only fault, in the entire activated 25 km-long system, cutting a thick succession of Quaternary deposits, with an associated 3-m-high cumulative scarp. A 190-m-long profile crossing the fault was acquired and analyzed combining reflection seismic, non-linear multiscale refraction P-wave tomography and multi-channel analysis of surface waves. The joint interpretation of the seismic reflection, P- and S-wave velocity images unravels a 100-m-thick sequence of sandy-gravel alluvial fans, disrupted by a main normal fault zone, named as Valle delle Fonti fault (Vf1), which branches upward into three splays. The eastern splay of Vf1 matches with the 2016 coseismic surface rupture. Near-surface truncated reflections and growth strata in the hanging wall of the western and intermediate splays attest to their activity in Late Pleistocene-Holocene times. We also detect an additional normal fault in the footwall of Vf1, probably inactive since the Late Pleistocene. Comparing the seismic images with the Poisson's coefficient model and with the results of a previous electrical resistivity tomography, we constrain the lithology and the hydraulic behavior of the uppermost 50 m of the fault. A steep, W-dipping zone with high-Vp, very high Poisson's coefficient and low resistivity correlates with the eastern splay of Valle delle Fonti fault and unravels a water-saturated region. These results suggest that the fault zone may act as a partial barrier for horizontal fluid flow. Our findings indicate that the active fault zone detected by seismic imaging is much wider than what previously estimated from surface geological analyses. In terms of surface faulting hazard, this study confirms the effectiveness of high-resolution seismic surveys in defining the geometry and physical properties of active fault zones.117 15 - PublicationOpen AccessEstimating the long-term slip rate of active normal faults: The case of the Paganica Fault (Central Apennines, Italy)(2022-10-15)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The footwall of the surface rupturing Paganica normal fault, the source of the 2009 L’Aquila earthquake (Mw 6.1) in the Central Apennines (Italy), was investigated using integrated geological and geomorphological approaches. The aim was to constrain the active tectonics by studying the Raiale River that orthogonally crosscuts the fault trace, where it provides a useful geomorphological marker of long-term fluvial incision and footwall uplift. Using morphostratigraphy and paleomagnetic analysis, the Plio–Pleistocene morphotectonic evolution of the area was reconstructed, comprising an ancient continental basin and paleolandforms that predate the footwall incision. Starting from the Late Early Pleistocene–Middle Pleistocene, fluvial dissection was mainly due to marked river downcutting triggered by significant activity of the Paganica Fault, which caused progressive base-level lowering. The Raiale River downcutting formed five Middle–Late Pleistocene fluvial terraces, that, along with absolute Optically Stimulated Luminescence (OSL) dating, allowed the identification of paleolongitudinal profiles with a diverging downstream configuration. Terrace dating yielded a minimum incision rate of 0.25 ± 0.02 mm/a, which only partially compensates the footwall uplift and can thus be considered as a minimum value for the Paganica Fault throw rate, which could reach up to ~0.45 mm/a. In parallel, using terrestrial cosmogenic nuclides, a denudation rate of 0.02–0.04 mm/a was measured on the summit of the footwall block. This denudation is in keeping with the drainage incision, suggesting a non-steady state for the fault footwall topography and a dominance of relief growth. Last, the analysis of the modern Raiale River longitudinal profile denoted an ungraded status, with two main knickzones that we interpret as transient forms due to tectonic perturbations, likely triggered by activity of the Paganica Fault during the end Early Pleistocene and the Late Pleistocene. Considering the 2009 L’Aquila earthquake coseismic rupture, we observe that the younger transience on the Raiale River longitudinal profile, if it is of tectonic origin, could have only been produced by much larger seismic events (i.e., Mw > 6.5) than those documented in the area by paleoseismological investigations. The collective results confirmed that in the Central Apennines, conditions of dynamic equilibrium are often not met, and that the persistence of transient perturbations induced by tectonics should be accounted for.127 112 - PublicationOpen AccessRevitalizing vintage seismic reflection profiles by converting into SEG-Y format: case studies from publicly available data on the Italian territory(2022-10)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In recent decades, geological modeling has significantly evolved, relying on the growing potential of hardware and software to manage and integrate vast datasets of 2D-3D geophysical underground data. Therefore, digitization and integration with other forms of data can often improve understanding of geological systems, even when using so-called vintage or historical data. Seismic reflection data have been extensively acquired mainly for hydrocarbon exploration since the 60s generating large volumes of data. Typically, these data have been for private commercial use and are relatively unavailable for research. However, with time, large volumes of vintage seismic reflection data in many countries worldwide are now becoming publicly available through time-based de-classification schemes. Such data have a great potential for modern-day geo-research, unleashing opportunities to improve geological understanding through re-interpretation with modern methods. However, a downside of these vintage data is that they are often only available in analog (paper, raster) format. The vectorization of these data then constitutes an essential step for unlocking their research potential. In 2018 INGV established the SISMOLAB-3D infrastructure, which is mainly devoted to analyzing digital subsurface data, such as seismic reflection profiles and well-logs, to build 2D-3D geological models, principally for seismotectonics, seismic hazard assessment, and geo-resources applications. In this contribution, we discuss the robustness of the WIGGLE2SEGY code, firstly published by Sopher in 2018, focusing on examples from different tectonic and geodynamic contexts within Italian territory. We applied the SEG-Y conversion method to onshore and offshore raster seismic profiles related to ceased exploration permits, comparing the results with other published archives of SEG-Y data obtained from the conversion of vintage data. Such an approach results in digital SEG-Y files with unprecedented quality and detail. The systematic application of this method will allow the construction of a comprehensive dataset of digital SEG-Y seismic profiles across Italy, thereby expanding and sharing the INGV SISMOLAB-3D portfolio with the scientific community to foster innovative and advanced scientific analysis.792 349 - PublicationOpen AccessHigh‐Resolution Seismic Imaging of Fault‐Controlled Basins: A Case Study From the 2009 Mw 6.1 Central Italy Earthquake(2022)
; ; ; ; ; We present the first seismic reflection images of the Paganica and Bazzano basins, two tectonic basins developed in the hanging wall of the Paganica-San Demetrio Fault System, the causative fault of the 2009 Mw 6.1 L'Aquila earthquake, Italy. Five high-resolution seismic profiles were acquired along a main, 7 km long transect cutting across the strands of an active fault system in urbanized areas with widespread sources of seismic noise. Three processing approaches were chosen to tackle a variable and site-dependent data quality. To aid interpretation of this complex setting, we complemented seismic amplitude images with energy and similarity attributes as well with post-stack acoustic impedance inversion. The final seismic sections expose, with unprecedented resolution, the basins' structure and the uppermost splays of the 2009 earthquake. The seismic data show fine details of the subsurface stratigraphic setting, revealing continental depocenters carved in the marine Meso-Cenozoic substratum and displaced by a series of conjugate normal faults, mostly unknown before this study. Several of the imaged fault strands connect to the 2009 coseismic surface ruptures. Matching the seismic interpretation with constraints from surface geology and shallow boreholes, published data from field surveys and scientific drilling, we present a structural map of the Bazzano and Paganica basins with an estimation of the depth of the Meso-Cenozoic substratum. This map highlights a different structure, evolution, and age of the two basins, with the older Bazzano basin that likely began to form in late Pliocene.192 15 - PublicationRestrictedSurface Faulting of the 26 December 2018, Mw 5 Earthquake at Mt. Etna Volcano (Italy): Geological Source Model and Implications for the Seismic Potential of the Fiandaca Fault(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; At Mt. Etna (Italy), volcano-tectonic earthquakes produce impressive surface faulting despite their moderate magnitude (M < 5.5), with historically well-documented ruptures featuring end-to-end lengths up to 6–7 km. The 26 December 2018, Mw 5.0 earthquake represents the strongest event of the last 70 years, with ground ruptures extending for 7.5 km along the Fiandaca fault, a partially hidden structure in the volcano's eastern flank. Field data collected by the EMERGEO Working Group (INGV) are here integrated with high-resolution photogrammetric surveys and geological-morphological observations to enable a detailed structural analysis and to reconstruct the morphotectonic process of fault growth. The deformation zone develops in a transtensional regime and shows a complex pattern, consisting of brittle structures arranged in en-échelon scale-invariant overlapping systems. Offsets and kinematics vary along the strike due to a major bend in the fault trace. We reconstructed a prevailing right-lateral displacement in the northern section of the fault and a dextral oblique slip in the southern one (max 35 cm); the dip-slip component increases southward (max 50 cm) and overall resembles the along-strike pattern of the long-term morphological throw. The kinematic analysis indicates a quasi-rigid behavior of the two fault blocks and suggests a geological model of rupture propagation that explains both the location of the seismic asperity in the northern section of the Fiandaca fault and the unclamping in the southern one. These findings are used to propose a conceptual model of the fault, representing insights for local fault-based seismic hazard assessment.968 31 - PublicationOpen AccessHigh‐Resolution Seismic Profiling in the Hanging Wall of the Southern Fault Section Ruptured During the 2016 M w 6.5 Central Italy Earthquake(2021-08-18)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; The Vettore–Bove normal fault system in central Italy ruptured during the 2016 MW 6.5 Norcia earthquake causing extensive surface faulting. At the Pian Grande di Castelluccio hanging wall basin, along the southern section of the fault ruptured during the MW 6.5 mainshock, we performed a high-resolution seismic reflection/refraction experiment aimed at (a) imaging the shallow pattern of the fault system, and (b) reconstructing the architecture of the continental infill. We collected three profiles for a total length of ∼8 km. We used a reflection processing flow and non-linear refraction tomography to obtain migrated stack sections and P-wave velocity images resolved down to the depth of the pre-Quaternary substratum. The main profile in the northern part of the basin crosses the westernmost splays of the ruptured fault zone striking N150°–170°. Seismic imaging unravels a ∼1 km-wide fault zone comprising three W-throwing splays and subsidiary faults, which affect the continental infill and produce a minimum aggregate Quaternary throw of ∼400 ± 100 m. Recent deformation is localized in this part of the surveyed fault section, attesting active displacement accumulation of the Vettore–Bove fault system. The other profiles in the central-southern part of the basin show additional faults, likely striking N20°–40° and which concurred to generate a ∼500 m-deep depocenter. These faults were mostly active during an early extensional phase; however, one of them likely displaces shallow layers with a throw close to the resolution limit of seismic data (<10 m), suggesting activity in the Late Pleistocene.555 80 - PublicationOpen AccessHigh resolution morphometric analysis of the Cordone del Vettore normal fault scarp (2016 central Italy seismic sequence): Insights into age, earthquake recurrence and throw rates(2021-05-18)
; ; ; ; ; ; ; ; ; ; ; We investigated the late Quaternary throw distribution of the main normal fault that ruptured during the Mw 6.5 2016 earthquake in central Italy by means of a high-resolution structure-from-motion (SfM)-derived Digital Surface Model (DSM). We focused on a key area along the Cordone del Vettore fault (CDV), which is part of the Vettore-Bove fault system (VBFS). The CDV displays a prominent compound post-glacial scarp that allowed the reconstruction of the along-strike cumulative throw distribution. We propose a geometric approach to calculate the CDV fault throw distribution from the reconstruction of a displaced glaciation-related erosional surface, used as a geomorphic marker, and a series of closely spaced cross profiles. The proposed calculation accounts for both the slip vector direction and the degraded scarp top, including field data on fault dip angles. Following this approach, we recognized two scarps with a minimum average fault throw of ~21 m and ~35 m for this section of the investigated fault strand. The correlation with the possible post-LGM (Last Glacial Maximum) deglaciation phases of the erosional surface suggests a minimum scarp age of 25–27 ka cal BP. Such an age provides a reasonable CDV fault throw rate of ~0.8 mm/a, comparable with known long-term throw rates of the VBFS and active Apennines normal faults. By comparing the reconstructed long-term Cordone del Vettore throw distribution with the 2016 coseismic one, ~24 2016-like surface faulting events are required to generate the main cumulative scarp, under the assumption of constant slip per event. This, along with the age of the scarp, yields an average earthquake recurrence time interval of ~1100 a. These results suggest the presence of multiple regional markers that correlates with different LGM (if not pre-LGM) major glacial phases, whose erosional processes allow the preservation of pre-existing bedrock fault scarp remnants.294 8 - PublicationOpen AccessProgetto RETRACE-3D - centRal italy EarThquakes integRAted Crustal modEl - Rapporto Finale(2021-03-29)
;RETRACE-3D, Working Group; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Il progetto RETRACE-3D (centRal italy EarThquakes integRAted Crustal modEl) è volto alla caratterizzazione tridimensionale, geologica e sismotettonica, del volume di crosta terrestre che a partire dal 24 agosto 2016 è stato interessato dai terremoti di Amatrice, Visso e Norcia, e dalla relativa sequenza sismica. Il progetto è il risultato di una collaborazione tra il Dipartimento della Protezione Civile, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV), il Consiglio Nazionale delle Ricerche che partecipa con l’Istituto di Geologia Ambientale e Geoingegneria (CNR-IGAG) e l’Istituto per il Rilevamento Elettromagnetico dell’Ambiente (CNR-IREA) e l’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), con la collaborazione di Eni e Total, realtà private ma anch’esse parte del Servizio nazionale della Protezione Civile, che hanno messo a disposizione i propri dati di sottosuolo.173 56