Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Roberts, A. P.*
Chang, L.*
Heslop, D.*
Florindo, F.*
Larrasoaña, J. C.*
Title: Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations
Title of journal: Journal of geophysical research
Series/Report no.: /117(2012)
Issue Date: 22-Aug-2012
DOI: 10.1029/2012JB009412
Keywords: hysteresis
pseudo-single domain
single domain
Abstract: Magnetic hysteresis measurements of sediments have resulted in widespread reporting of “pseudo-single-domain”-like magnetic properties. In contrast, the ideal single domain (SD) properties that would be expected to be responsible for high quality paleomagnetic records are rare. Determining whether SD particles are rare or common in sediments requires application of techniques that enable discrimination among different magnetic components in a sediment. We apply a range of such techniques and find that SD particles are much more common than has been reported in the literature and that magnetite magnetofossils (the inorganic remains of magnetotactic bacteria) are widely preserved at depth in a range of sediment types, including biogenic pelagic carbonates, lacustrine and marine clays, and possibly even in glaci-marine sediments. Thus, instead of being rarely preserved in the geological record, we find that magnetofossils are widespread. This observation has important implications for our understanding of how sediments become magnetized and highlights the need to develop a more robust basis for understanding how biogenic magnetite contributes to the magnetization of sediments. Magnetofossils also have grain sizes that are substantially smaller than the 1–15 mm size range for which there is reasonable empirical support for relative paleointensity studies. The different magnetic response of coexisting fine biogenic and coarser lithogenic particles is likely to complicate relative paleointensity studies. This issue needs much closer attention. Despite the fact that sediments have been subjected to paleomagnetic investigation for over 60 years, much remains to be understood about how they become magnetized.
Appears in Collections:04.05.09. Environmental magnetism
04.05.07. Rock magnetism
04.05.06. Paleomagnetism
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Roberts et al 2012.pdf4.07 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA