Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8267
DC FieldValueLanguage
dc.contributor.authorallRoberts, A. P.; National Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.authorallChang, L.; National Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.authorallHeslop, D.; Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.en
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallLarrasoaña, J. C.; Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.en
dc.date.accessioned2012-10-18T07:31:42Zen
dc.date.available2012-10-18T07:31:42Zen
dc.date.issued2012-08-22en
dc.identifier.urihttp://hdl.handle.net/2122/8267en
dc.description.abstractMagnetic hysteresis measurements of sediments have resulted in widespread reporting of “pseudo-single-domain”-like magnetic properties. In contrast, the ideal single domain (SD) properties that would be expected to be responsible for high quality paleomagnetic records are rare. Determining whether SD particles are rare or common in sediments requires application of techniques that enable discrimination among different magnetic components in a sediment. We apply a range of such techniques and find that SD particles are much more common than has been reported in the literature and that magnetite magnetofossils (the inorganic remains of magnetotactic bacteria) are widely preserved at depth in a range of sediment types, including biogenic pelagic carbonates, lacustrine and marine clays, and possibly even in glaci-marine sediments. Thus, instead of being rarely preserved in the geological record, we find that magnetofossils are widespread. This observation has important implications for our understanding of how sediments become magnetized and highlights the need to develop a more robust basis for understanding how biogenic magnetite contributes to the magnetization of sediments. Magnetofossils also have grain sizes that are substantially smaller than the 1–15 mm size range for which there is reasonable empirical support for relative paleointensity studies. The different magnetic response of coexisting fine biogenic and coarser lithogenic particles is likely to complicate relative paleointensity studies. This issue needs much closer attention. Despite the fact that sediments have been subjected to paleomagnetic investigation for over 60 years, much remains to be understood about how they become magnetized.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/117(2012)en
dc.subjecthysteresisen
dc.subjectmagnetiteen
dc.subjectpseudo-single domainen
dc.subjectsingle domainen
dc.titleSearching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB08104en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1029/2012JB009412en
dc.relation.referencesAbrajevitch, A., and K. Kodama (2009), Biochemical vs. detrital mechanism of remanence acquisition in marine carbonates: A lesson from the K-T boundary interval, Earth Planet. Sci. Lett., 286, 269–277, doi:10.1016/ j.epsl.2009.06.035. Abrajevitch, A., and K. Kodama (2011), Diagenetic sensitivity of paleoenvironmental proxies: A rock magnetic study of Australian continental margin sediments, Geochem. Geophys. Geosyst., 12, Q05Z24, doi:10.1029/ 2010GC003481. Aubourg, C., and J. P. Pozzi (2010), Toward a new <250"C pyrrhotitemagnetite geothermometer for claystones, Earth Planet. Sci. Lett., 294, 47–57, doi:10.1016/j.epsl.2010.02.045. Banerjee, S., R. D. Elmore, and M. H. Engel (1997), Chemical remagnetization and burial diagenesis: Testing the hypothesis in the Pennsylvanian Belden Formation, Colorado, J. Geophys. Res., 102, 24,825–24,842, doi:10.1029/97JB01893. Bazylinski, D. A., and R. B. Frankel (2004), Magnetosome formation in prokaryotes, Nat. Rev. Microbiol., 2, 217–230, doi:10.1038/nrmicro842. Boughriet, A., B. Ouddane, and M. Wartel (1992), Electron spin resonance investigations of Mn compounds and free radicals in particles from the Seine River and its estuary, Mar. Chem., 37, 149–169, doi:10.1016/ 0304-4203(92)90075-L. Carvallo, C., A. P. Roberts, R. Leonhardt, C. Laj, C. Kissel, M. Perrin, and P. Camps (2006), Increasing the efficiency of paleointensity analyses by selection of samples using first-order reversal curve (FORC) diagrams, J. Geophys. Res., 111, B12103, doi:10.1029/2005JB004126. Carvallo, C., S. Hickey, D. Faivre, and N. Menguy (2009), Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams, Earth Planets Space, 61, 143–150. Chang, L., M. Winklhofer, A. P. Roberts, M. J. Dekkers, C.-S. Horng, L. Hu, and Q. W. Chen (2012), Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8) and non-interacting titanomagnetite (Fe3-xTixO4), Geochem. Geophys. Geosyst., 13, Q05Z41, doi:10.1029/2012GC004063. Channell, J. E. T., and H. F. Kleiven (2000), Geomagnetic palaeointensities and astrochronological ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo Subchron: Palaeomagnetic and oxygen isotope records from ODP Site 983, Philos. Trans. R. Soc. A, 358, 1027–1047, doi:10.1098/rsta.2000.0572. Charilaou, M., M. Winklhofer, and A. U. Gehring (2011), Simulation of ferromagnetic resonance spectra of linear chains of magnetite nanocrystals, J. Appl. Phys., 109, 093903, doi:10.1063/1.3581103. Chen, A. P., R. Egli, and B. M. Moskowitz (2007), First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles, J. Geophys. Res., 112, B08S90, doi:10.1029/2006JB004575. Constable, C. G., and L. Tauxe (1987), Palaeointensity in the pelagic realm: Marine sediment data compared with archaeomagnetic and lake sediment records, Geophys. J. R. Astron. Soc., 90, 43–59, doi:10.1111/j.1365- 246X.1987.tb00674.x. Constable, C. G., L. Tauxe, and R. L. Parker (1998), Analysis of 11 Myr of geomagnetic intensity variation, J. Geophys. Res., 103, 17,735–17,748, doi:10.1029/98JB01519. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. de Boor, C. (1994), A Practical Guide to Splines (Applied Mathematical Sciences), Springer, New York. Dinarès-Turell, J., L. Sagnotti, and A. P. Roberts (2002), Relative geomagnetic paleointensity from the Jaramillo subchron to the Matuyama/ Brunhes boundary as recorded in a Mediterranean piston core, Earth Planet. Sci. Lett., 194, 327–341, doi:10.1016/S0012-821X(01)00563-5. Dinarès-Turell, J., B. A. A. Hoogakker, A. P. Roberts, E. J. Rohling, and L. Sagnotti (2003), Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 195–209, doi:10.1016/ S0031-0182(02)00605-3. Dunin-Borkowski, R. E., M. R. McCartney, R. B. Frankel, D. A. Bazylinski, M. Pósfai, and P. R. Buseck (1998), Magnetic microstructure of magnetotactic bacteria by electron holography, Science, 282, 1868–1870, doi:10.1126/science.282.5395.1868. Dunlop, D. J. (1972), Magnetite: Behavior near the single-domain threshold, Science, 176, 41–43, doi:10.1126/science.176.4030.41. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Dunlop, D. J., and Ö. Özdemir (1997), Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York. Egli, R. (2004a), Characterization of individual rock magnetic components by analysis of remanence curves: 1. Unmixing natural sediments, Stud. Geophys. Geod., 48, 391–446, doi:10.1023/B:SGEG.0000020839.45304.6d. Egli, R. (2004b), Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions, Phys. Chem. Earth, 29, 851–867, doi:10.1016/S1474-7065(04) 00129-9. Egli, R. (2004c), Characterization of individual rock magnetic components by analysis of remanence curves: 3. Bacterial magnetite and natural processes in lakes, Phys. Chem. Earth, 29, 869–884, doi:10.1016/j.pce.2004.03.010. Egli, R., A. P. Chen, M. Winklhofer, K. P. Kodama, and C. S. Horng (2010), Detection of noninteracting single domain particles using firstorder reversal curve diagrams, Geochem. Geophys. Geosyst., 11, Q01Z11, doi:10.1029/2009GC002916. Faivre, D., and D. Schüler (2008), Magnetotactic bacteria and magnetosomes, Chem. Rev., 108, 4875–4898, doi:10.1021/cr078258w. Fischer, H., G. Mastrogiacomo, J. F. Löffler, R. J. Warthmann, P. G. Weidler, and A. U. Gehring (2008), Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense, Earth Planet. Sci. Lett., 270, 200–208, doi:10.1016/j.epsl.2008.03.022. Flanders, P. J. (1988), An alternating gradient magnetometer, J. Appl. Phys., 63, 3940–3945, doi:10.1063/1.340582. Florindo, F., and A. P. Roberts (2005), Eocene-Oligocene magnetobiostratigraphy of ODP sites 689 and 690, Maud Rise, Weddell Sea, Antarctica, Geol. Soc. Am. Bull., 117, 46–66, doi:10.1130/B25541.1. Gehring, A. U., J. Kind, M. Charilaou, and I. García-Rubio (2011), The detection of magnetotactic bacteria and magnetofossils by means of magnetic anisotropy, Earth Planet. Sci. Lett., 309, 113–117, doi:10.1016/j.epsl.2011.06.024. Geiss, C. E., R. Egli, and C. W. Zanner (2008), Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils, J. Geophys. Res., 113, B11102, doi:10.1029/2008JB005669. Hagelberg, T. K., N. G. Pisias, N. J. Shackleton, A. C. Mix, and S. Harris (1995), Refinement of a high-resolution, continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg 138, Proc. Ocean Drill. Program Sci. Results, 138, 31–46. Hanzlik, M., M. Winklhofer, and N. Petersen (2002), Pulsed-fieldremanence measurements on individual magnetotactic bacteria, J. Magn. Magn. Mater., 248, 258–267, doi:10.1016/S0304-8853(02)00353-0. Heider, F., U. Körner, and P. Bitschene (1993), Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau, Earth Planet. Sci. Lett., 118, 121–134, doi:10.1016/ 0012-821X(93)90163-4. Heslop, D., and A. P. Roberts (2012a), Estimating best-fit binary mixing lines in the Day plot, J. Geophys. Res., 117, B01101, doi:10.1029/ 2011JB008787. Heslop, D., and A. P. Roberts (2012b), A method for unmixing magnetic hysteresis loops, J. Geophys. Res., 117, B03103, doi:10.1029/ 2011JB008859. Heslop, D., M. J. Dekkers, P. P. Kruiver, and I. H. M. van Oorschot (2002), Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm, Geophys. J. Int., 148, 58–64, doi:10.1046/j.0956-540x.2001.01558.x. Hesse, P. P. (1994), Evidence for bacterial palaeoecological origin of mineral magnetic cycles in oxic and sub-oxic Tasman Sea sediments, Mar. Geol., 117, 1–17, doi:10.1016/0025-3227(94)90003-5. Horng, C. S., and A. P. Roberts (2006), Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum, Earth Planet. Sci. Lett., 241, 750–762, doi:10.1016/j.epsl.2005.11.008. Housen, B. A., and B. M. Moskowitz (2006), Depth distribution of magnetofossils in near-surface sediments from the Blake/Bahama Outer Ridge, western North Atlantic Ocean, determined by low-temperature magnetism, J. Geophys. Res., 111, G01005, doi:10.1029/2005JG000068. Jackson, M., C. McCabe, M. M. Ballard, and R. Van der Voo (1988), Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian basin, Geology, 16, 592–595, doi:10.1130/0091- 7613(1988)016<0592:MAADPA>2.3.CO;2. Jackson, M., P. Rochette, G. Fillion, S. Banerjee, and J. Marvin (1993), Rock magnetism of remagnetized Paleozoic carbonates: Low-temperature behavior and susceptibility characteristics, J. Geophys. Res., 98, 6217–6225, doi:10.1029/92JB01319. Jacobs, I. S., and C. P. Bean (1955), An approach to elongated fine particle magnets, Phys. Rev., 100, 1060–1067, doi:10.1103/PhysRev.100.1060. Johnson, E. A., T. Murphy, and O. W. Torreson (1948), Pre-history of the Earth’s magnetic field, Terr. Magn. Atmos. Electr., 53, 349–372, doi:10.1029/TE053i004p00349. Kent, D. V., B. S. Cramer, L. Lanci, D. Wang, J. D. Wright, and R. Van der Voo (2003), A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion, Earth Planet. Sci. Lett., 211, 13–26, doi:10.1016/S0012-821X(03)00188-2. Kind, J., A. U. Gehring, M. Winklhofer, and A. M. Hirt (2011), Combined use of magnetometry and spectroscopy for identifying magnetofossils in sediments, Geochem. Geophys. Geosyst., 12, Q08008, doi:10.1029/ 2011GC003633. King, J. W., S. K. Banerjee, and J. Marvin (1983), A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years, J. Geophys. Res., 88, 5911–5921, doi:10.1029/JB088iB07p05911. Kirschvink, J. L. (1982), Paleomagnetic evidence for fossil biogenic magnetite in Western Crete, Earth Planet. Sci. Lett., 59, 388–392, doi:10.1016/0012-821X(82)90140-6. Kissel, C., C. Laj, T. Mulder, C. Wandres, and M. Cremer (2009), The magnetic fraction: A tracer of deep water circulation in the North Atlantic, Earth Planet. Sci. Lett., 288, 444–454, doi:10.1016/j.epsl.2009.10.005. Kok, Y. S., and L. Tauxe (1999), A relative geomagnetic paleointensity stack from Ontong-Java Plateau sediments for the Matuyama, J. Geophys. Res., 104, 25,401–25,413, doi:10.1029/1999JB900186. Kopp, R. E., and J. L. Kirschvink (2008), The identification and biogeochemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., 86, 42–61, doi:10.1016/j.earscirev.2007.08.001. Kopp, R. E., B. P. Weiss, A. C. Maloof, H. Vali, C. Z. Nash, and J. L. Kirschvink (2006), Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy, Earth Planet. Sci. Lett., 247, 10–25, doi:10.1016/j.epsl.2006.05.001. Kopp, R. E., T. D. Raub, D. Schumann, H. Vali, A. V. Smirnov, and J. L. Kirschvink (2007), Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States, Paleoceanography, 22, PA4103, doi:10.1029/2007PA001473. Kruiver, P. P., M. J. Dekkers, and D. Heslop (2001), Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization, Earth Planet. Sci. Lett., 189, 269–276, doi:10.1016/S0012-821X(01)00367-3. Lanci, L., B. Delmonte, D. V. Kent, V. Maggi, P. E. Biscaye, and J. R. Petit (2012), Magnetization of polar ice: A measurement of terrestrial dust and extraterrestrial fallout, Quat. Sci. Rev., 33, 20–31, doi:10.1016/ j.quascirev.2011.11.023. Larrasoaña, J. C., A. P. Roberts, R. J. Musgrave, E. Gràcia, E. Piñero, M. Vega, and F. Martínez-Ruiz (2007), Diagenetic formation of greigite and pyrrhotite in marine sedimentary systems containing gas hydrates, Earth Planet. Sci. Lett., 261, 350–366, doi:10.1016/j.epsl.2007.06.032. Larrasoaña, J. C., A. P. Roberts, L. Chang, S. A. Schellenberg, J. D. Fitz Gerald, R. D. Norris, and J. C. Zachos (2012), Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene-Eocene thermal maximum, Earth Planet. Sci. Lett., 333–334, 122–133, doi:10.1016/ j.epsl.2012.04.003. Lean, C. M. B., and I. N. McCave (1998), Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean, Earth Planet. Sci. Lett., 163, 247–260, doi:10.1016/ S0012-821X(98)00191-5. Li, J., Y. Pan, G. Chen, Q. Liu, L. Tian, and W. Lin (2009), Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations, Geophys. J. Int., 177, 33–42, doi:10.1111/j.1365-246X.2009.04043.x. Li, J. H., et al. (2010), Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria, Earth Planet. Sci. Lett., 293, 368–376. Lippert, P. C., and J. C. Zachos (2007), A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey, Paleoceanography, 22, PA4104, doi:10.1029/ 2007PA001471. Liu, Q. S., J. Torrent, B. A. Maher, Y. J. Yu, C. L. Deng, R. X. Zhu, and X. X. Zhao (2005), Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis, J. Geophys. Res., 110, B11102, doi:10.1029/2005JB003726. Lovley, D. R. (1991), Magnetite formation during microbial dissimilatory iron reduction, in Iron Biominerals, edited by R. B. Frankel and R. P. Blakemore, pp. 151–166, Plenum, New York, doi:10.1007/978-1-4615- 3810-3_11. Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. P. Phillips (1987), Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330, 252–254, doi:10.1038/330252a0. Maher, B. A., and R. M. Taylor (1988), Formation of ultrafine-grained magnetite in soils, Nature, 336, 368–370, doi:10.1038/336368a0. Mastrogiacomo, G., H. Fischer, I. García-Rubio, and A. U. Gehring (2010), Ferromagnetic resonance spectroscopic response of magnetite chains in a biological matrix, J. Magn. Magn. Mater., 322, 661–663, doi:10.1016/ j.jmmm.2009.10.035. McNeill, D. F. (1990), Biogenic magnetite from surface Holocene carbonate sediments, Great Bahama Bank, J. Geophys. Res., 95, 4363–4371, doi:10.1029/JB095iB04p04363. Moreau, M. G., M. Ader, and R. J. Enkin (2005), The magnetization of clay-rich rocks in sedimentary basins: Low-temperature experimental formation of magnetic carriers in natural samples, Earth Planet. Sci. Lett., 230, 193–210, doi:10.1016/j.epsl.2004.11.013. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski (1993), Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, doi:10.1016/0012-821X(93)90245-5. Muxworthy, A. R., and D. J. Dunlop (2002), First-order reversal curve (FORC) diagrams for pseudo-single domain magnetites at high temperature, Earth Planet. Sci. Lett., 203, 369–382, doi:10.1016/S0012-821X (02)00880-4. Muxworthy, A. R., and W. Williams (2006), Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes, J. Geophys. Res., 111, B12S12, doi:10.1029/2006JB004588. Muxworthy, A. R., and W. Williams (2009), Critical superparamagnetic/ single domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals, J. R. Soc. Interface, 6, 1207–1212. Muxworthy, A. R., W. Williams, and D. Virdee (2003), Effect of magnetostatic interactions on the hysteresis properties of single-domain and pseudo-single domain grains, J. Geophys. Res., 108(B11), 2517, doi:10.1029/2003JB002588. Muxworthy, A. R., J. G. King, and D. Heslop (2005), Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals, J. Geophys. Res., 110, B01105, doi:10.1029/2004JB003195. Néel, L. (1955), Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191–243, doi:10.1080/00018735500101204. Newell, A. J. (2005), A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC000877. Otamendi, A. M., M. Díaz, V. Costanzo-Álvarez, M. Aldana, and A. Pilloud (2006), EPR stratigraphy applied to the study of two marine sedimentary sections in southwestern Venezuela, Phys. Earth Planet. Inter., 154, 243–254, doi:10.1016/j.pepi.2005.04.015. Pan, Y. X., N. Petersen,M. Winklhofer, A. F. Davila, Q. S. Liu, T. Frederichs, M. Hanzlik, and R. X. Zhu (2005), Rock magnetic properties of uncultured magnetotactic bacteria, Earth Planet. Sci. Lett., 237, 311–325, doi:10.1016/ j.epsl.2005.06.029. Passier, H. F., and M. J. Dekkers (2002), Iron oxide formation in the active oxidation front above sapropel S1 in the eastern Mediterranean Sea as derived from low-temperature magnetism, Geophys. J. Int., 150, 230–240, doi:10.1046/j.1365-246X.2002.01704.x. Paterson, G., A. R. Muxworthy, A. P. Roberts, and C. MacNiocaill (2010), Assessment of the usefulness of lithic clasts from pyroclastic deposits for paleointensity determination, J. Geophys. Res., 115, B03104, doi:10.1029/ 2009JB006475. Penninga, I., H. de Waard, B. M. Moskowitz, D. A. Bazylinksi, and R. B. Frankel (1995), Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field, J. Magn. Magn. Mater., 149, 279–286, doi:10.1016/0304-8853(95)00078-X. Petersen, N., T. von Dobeneck, and H. Vali (1986), Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean, Nature, 320, 611–615, doi:10.1038/320611a0. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, doi:10.1063/1.370176. Pike, C. R., A. P. Roberts, and K. L. Verosub (2001), First-order reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721–730, doi:10.1046/j.0956-540x.2001.01419.x. Roberts, A. P. (1995), Magnetic characteristics of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 134, 227–236, doi:10.1016/0012-821X (95)00131-U. Roberts, A. P., K. L. Verosub, and R. M. Negrini (1994), Middle/Late Pleistocene relative palaeointensity of the geomagnetic field from lacustrine sediments, Lake Chewaucan, western United States, Geophys. J. Int., 118, 101–110, doi:10.1111/j.1365-246X.1994.tb04678.x. Roberts, A. P., K. L. Verosub, R. J. Weeks, B. Lehman, and C. Laj (1995a), Mineral magnetic properties of Middle and Late Pleistocene sediments at ODP sites 883, 884, and 887, North Pacific Ocean, Proc. Ocean Drill. Program Sci. Results, 145, 483–490. Roberts, A. P., Y. L. Cui, and K. L. Verosub (1995b), Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res., 100, 17,909–17,924, doi:10.1029/95JB00672. Roberts, A. P., R. L. Reynolds, K. L. Verosub, and D. P. Adam (1996), Environmental magnetic implications of greigite (Fe3S4) formation in a 3 million year lake sediment record from Butte Valley, Northern California, Geophys. Res. Lett., 23, 2859–2862, doi:10.1029/96GL02831. Roberts, A. P., G. S. Wilson, F. Florindo, L. Sagnotti, K. L. Verosub, and D. M. Harwood (1998), Magnetostratigraphy of lower Miocene strata from the CRP-1 core, McMurdo Sound, Ross Sea, Antarctica, Terra Antart., 5, 703–713. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/ 2000JB900326. Roberts, A. P., G. S. Wilson, D. M. Harwood, and K. L. Verosub (2003), Glaciation across the Oligocene-Miocene boundary in southern McMurdo Sound, Antarctica: New chronology from the CIROS-1 drillhole, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 113–130, doi:10.1016/S0031-0182(03)00399-7. Roberts, A. P., Q. Liu, C. J. Rowan, L. Chang, C. Carvallo, J. Torrent, and C. S. Horng (2006), Characterization of hematite (a-Fe2O3), goethite (a-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams, J. Geophys. Res., 111, B12S35, doi:10.1029/ 2006JB004715. Roberts, A. P., A. Bakrania, F. Florindo, C. J. Rowan, C. R. Fielding, and R. D. Powell (2007), High-resolution evidence for dynamic transitional geomagnetic field behaviour from a Miocene reversal, McMurdo Sound, Ross Sea, Antarctica, Earth Planets Space, 59, 815–824. Roberts, A. P., F. Florindo, J. C. Larrasoaña, M. A. O’Regan, and X. Zhao (2010), Complex polarity pattern at the (former) Plio-Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides, Earth Planet. Sci. Lett., 292, 98–111, doi:10.1016/j.epsl.2010.01.025. Roberts, A. P., F. Florindo, G. Villa, L. Chang, L. Jovane, S. M. Bohaty, J. C. Larrasoaña, D. Heslop, and J. D. Fitz Gerald (2011a), Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron, Earth Planet. Sci. Lett., 310, 441–452, doi:10.1016/j.epsl.2011.08.011. Roberts, A. P., L. Chang, C. J. Rowan, C.-S. Horng, and F. Florindo (2011b), Magnetic properties of sedimentary greigite (Fe3S4): An update, Rev. Geophys., 49, RG1002, doi:10.1029/2010RG000336. Robertson, D. J., and D. E. France (1994), Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves, Phys. Earth Planet. Inter., 82, 223–234, doi:10.1016/ 0031-9201(94)90074-4. Sagnotti, L., F. Florindo, K. L. Verosub, G. S. Wilson, and A. P. Roberts (1998), Environmental magnetic record of Antarctic palaeoclimate from Eocene-Oligocene glaciomarine sediments,Victoria Land margin, Geophys. J. Int., 134, 653–662, doi:10.1046/j.1365-246x.1998.00559.x. Sagnotti, L., K. L. Verosub, A. P. Roberts, F. Florindo, and G. S. Wilson (2001), Environmental magnetic record of the Eocene-Oligocene transition in the CRP-3 drillcore, Victoria Land Basin, Antarctica, Terra Antart., 8, 507–516. Sagnotti, L., A. P. Roberts, R. Weaver, K. L. Verosub, F. Florindo, G. S. Wilson, C. R. Pike, and T. Clayton (2005), Apparent high-frequency magnetic polarity reversals due to alternating remagnetizations resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100, doi:10.1111/j.1365-246X.2005.02485.x. Sarna-Wojcicki, A. M., M. S. Pringle, and J. Wijbrans (2000), New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary, J. Geophys. Res., 105, 21,431–21,443. Smirnov, A. V., and J. A. Tarduno (2000), Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction, J. Geophys. Res., 105, 16,457–16,471, doi:10.1029/2000JB900140. Stolz, J. F., S. B. R. Chang, and J. L. Kirschvink (1986), Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments, Nature, 321, 849–851, doi:10.1038/321849a0. Suk, D., D. R. Peacor, and R. van der Voo (1990a), Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism, Nature, 345, 611–613, doi:10.1038/345611a0. Suk, D. W., R. van der Voo, and D. R. Peacor (1990b), Scanning and transmission electron-microscope observations of magnetite and other iron phases in Ordovician carbonates from east Tennessee, J. Geophys. Res., 95, 12,327–12,336, doi:10.1029/JB095iB08p12327. Sun, D. H., J. Bloemendal, D. K. Rea, J. Vandenberghe, F. C. Jiang, Z. S. An, and R. X. Su (2002), Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components, Sediment. Geol., 152, 263–277, doi:10.1016/S0037-0738(02)00082-9. Sun, Y. B., H. Y. Lu, and Z. S. An (2006), Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution, Palaeogeogr. Palaeoclimatol. Palaeoecol., 241, 129–138, doi:10.1016/j.palaeo. 2006.06.018. Tarduno, J. A. (1994), Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity?, Earth Planet. Sci. Lett., 123, 39–48, doi:10.1016/0012-821X(94)90255-0. Tarduno, J. A., and S. Wilkison (1996), Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments, Earth Planet. Sci. Lett., 144, 315–326, doi:10.1016/ S0012-821X(96)00174-4. Tarduno, J. A., W. L. Tian, and S. Wilkison (1998), Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean, Geophys. Res. Lett., 25, 3987–3990, doi:10.1029/1998GL900079. Tauxe, L. (1993), Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice, Rev. Geophys., 31, 319–354, doi:10.1029/93RG01771. Tauxe, L., and P. Hartl (1997), 11 million years of Oligocene geomagnetic field behaviour, Geophys. J. Int., 128, 217–229, doi:10.1111/j.1365- 246X.1997.tb04082.x. Tauxe, L., and N. J. Shackleton (1994), Relative palaeointensity records from the Ontong-Java Plateau, Geophys. J. Int., 117, 769–782, doi:10.1111/ j.1365-246X.1994.tb02469.x. Tauxe, L., and G. Wu(1990), Normalized remanence in sediments of thewestern equatorial Pacific: Relative paleointensity of the geomagnetic field? J. Geophys. Res., 95, 12,337–12,350, doi:10.1029/JB095iB08p12337. Tauxe, L., and T. Yamazaki (2007), Paleointensities, in Treatise on Geophysics, vol. 5, edited by M. Kono, pp. 509–563, Elsevier, New York, doi:10.1016/B978-044452748-6.00098-5. Tauxe, L., T. A. T. Mullender, and T. Pick (1996), Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 101, 571–583, doi:10.1029/95JB03041. Thompson, R. S., C. G. Oviatt, A. P. Roberts, J. Buchner, R. Kelsey, C. Bracht, R. M. Forester, and J. P. Bradbury (1995), Sedimentology, paleontology, and paleomagnetism of Pliocene-Early Pleistocene lacustrine deposits in two cores from western Utah, U.S. Geol. Surv. Open File Rep., 95–1, 94 pp. Torii, M. (1997), Low-temperature oxidation and subsequent downcore dissolution of magnetite in deep-sea sediments, ODP Leg 161 (western Mediterranean), J. Geomagn. Geoelectr., 49, 1233–1245, doi:10.5636/ jgg.49.1233. Valet, J.-P., and L. Meynadier (1993), Geomagnetic field intensity and reversals during the past four million years, Nature, 366, 234–238, doi:10.1038/366234a0. Vali, H., O. Förster, G. Amarantidis, and N. Petersen (1987), Magnetotactic bacteria and their magnetofossils in sediments, Earth Planet. Sci. Lett., 86, 389–400, doi:10.1016/0012-821X(87)90235-4. Verosub, K. L., F. Florindo, L. Sagnotti, A. P. Roberts, and G. S. Wilson (2000), Environmental magnetism of Oligocene–Miocene glaciomarine strata from the CRP-2/2A core, McMurdo Sound, Ross Sea, Antarctica, Terra Antart., 7, 599–608. Weaver, R., A. P. Roberts, and A. J. Barker (2002), A late diagenetic (synfolding) magnetization carried by pyrrhotite: Implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments, Earth Planet. Sci. Lett., 200, 371–386, doi:10.1016/S0012-821X(02)00652-0. Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili (2004), Ferromagnetic resonance and lowtemperature magnetic test for biogenic magnetite, Earth Planet. Sci. Lett., 224, 73–89, doi:10.1016/j.epsl.2004.04.024. Weltje, G. J., and M. A. Prins (2003), Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics, Sediment. Geol., 162, 39–62, doi:10.1016/S0037-0738(03)00235-5. Wilson, G. S., F. Florindo, L. Sagnotti, K. L. Verosub, and A. P. Roberts (2000), Magnetostratigraphy of Oligocene–Miocene glaciomarine strata from the CRP-2/2A core, McMurdo Sound, Ross Sea, Antarctica, Terra Antart., 7, 631–646. Yamazaki, T. (2008), Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: Implications for relative paleointensity normalization, Geochem. Geophys. Geosyst., 9, Q02005, doi:10.1029/2007GC001797. Yamazaki, T. (2009), Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: Temporal variations of detrital and biogenic components, Geochem. Geophys. Geosyst., 10, Q07Z04, doi:10.1029/2009GC002413. Yamazaki, T. (2012), Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions, Geology, 40, 151–154, doi:10.1130/G32646.1. Yamazaki, T., and H. Kawahata (1998), Organic carbon flux controls the morphology of magnetofossils in sediments, Geology, 26, 1064–1066, doi:10.1130/0091-7613(1998)026<1064:OCFCTM>2.3.CO;2. Yamazaki, T., and H. Oda (2005), A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores, Geochem. Geophys. Geosyst., 6, Q11H20, doi:10.1029/2005GC001001. Yamazaki, T., and P. Solheid (2011), Maghemite-to-magnetite reduction across the Fe-redox boundary in a sediment core from the Ontong-Java Plateau: Influence on relative palaeointensity estimation and environmental magnetic application, Geophys. J. Int., 185, 1243–1254, doi:10.1111/ j.1365-246X.2011.05021.x. Zhou, L. P., F. Oldfield, A. G. Wintle, S. G. Robinson, and J. T. Wang (1990), Partly pedogenic origin of magnetic variations in Chinese loess, Nature, 346, 737–739, doi:10.1038/346737a0.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorChang, L.en
dc.contributor.authorHeslop, D.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorLarrasoaña, J. C.en
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.departmentResearch School of Earth Sciences, Australian National University, Canberra, ACT, Australia.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentResearch School of Earth Sciences, Australian National University, Canberra, ACT, Australia.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.deptNational Oceanography Centre, Southampton, University of Southampton, Southampton, UK-
crisitem.author.deptResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptInstituto Geológico y Minero de España, Unidad de Zaragoza, E-50006, Zaragoza, Spain-
crisitem.author.orcid0000-0001-8245-0555-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Roberts et al 2012.pdf4.07 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

114
checked on Feb 10, 2021

Page view(s) 20

249
checked on Apr 20, 2024

Download(s)

27
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric