Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Paonita, A.*
Title: Long-range correlation and nonlinearity in geochemical time series of gas discharges from Mt. Etna, and changes with 2001 and 2002-03 eruptions
Title of journal: Nonlinear Processes in Geophysics
Series/Report no.: /17 (2010)
Publisher: Copernicus GmbH
Issue Date: 10-Dec-2010
DOI: 10.5194/npg-17-733-2010
Keywords: gas geochemistry
self-organized criticality
Abstract: In this paper, spectral and detrended fluctuation analyses, as well as time reversibility and magnitude-sign decomposition, have been applied to the 10-year time-series data resulting from geochemical monitoring of gas emissions on the flanks of Mt. Etna, and gases from a CO2 exploitation well located tens of kilometers from the volcano. The analysis of the time series which showed main effects of fractionation between gases due to selective dissolution in aquifers (e.g., the CO2 concentration series), revealed the occurrence of random fluctuations in time, typical of systems where several processes combine linearly. In contrast, the series of He isotopic composition exhibited power-law behavior of the second-order fluctuation statistics, with values of the scaling exponent close to 0.9. When related to the spectral exponent, this value indicates that the isotopic series closely resemble fractal flicker-noise signals having persistent long-range correlations. The isotopic signals also displayed asymmetry under time reversal and long-range correlation of the associated magnitude series, therefore it was statistically proved the presence of nonlinearity. Both long-range correlation and nonlinearity in time series have been generally considered as distinctive features of dynamic systems where numerous processes interact by feedback mechanisms, in accordance with the paradigm of self-organized criticality (SOC). Thus, it is here proposed that the system that generated the isotope series worked under conditions of SOC. Since the fluctuations of the isotope series have been related to magma degassing, the previous results place constraints on the dynamics of such process, and suggest that nonequilibrium conditions must be dominant. It remains unclear whether the signature of SOC is directly due to volatile degassing from magma, or if it derives from the interaction between melt and the stress field, which certainly influences magma decompression. The strength of scaling appears to increase after 2002 ( values from 0.8 up to 1.2), focusing on transition of the Etnean system from typical SOC toward conditions of lower criticality. By comparing this transition with those of geophysical observables, it can be suggested that the drop in the rate of magma supply, subsequent to the paroxysms of 2001 and 2002–2003, was the main cause of the scaling change.
Appears in Collections:04.08.01. Gases
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
Paonita ArticleDef 10.pdfArticle1.53 MBAdobe PDFonly authorized users View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA