Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6303
DC FieldValueLanguage
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2010-12-13T10:32:55Zen
dc.date.available2010-12-13T10:32:55Zen
dc.date.issued2010-12-10en
dc.identifier.urihttp://hdl.handle.net/2122/6303en
dc.description.abstractIn this paper, spectral and detrended fluctuation analyses, as well as time reversibility and magnitude-sign decomposition, have been applied to the 10-year time-series data resulting from geochemical monitoring of gas emissions on the flanks of Mt. Etna, and gases from a CO2 exploitation well located tens of kilometers from the volcano. The analysis of the time series which showed main effects of fractionation between gases due to selective dissolution in aquifers (e.g., the CO2 concentration series), revealed the occurrence of random fluctuations in time, typical of systems where several processes combine linearly. In contrast, the series of He isotopic composition exhibited power-law behavior of the second-order fluctuation statistics, with values of the scaling exponent close to 0.9. When related to the spectral exponent, this value indicates that the isotopic series closely resemble fractal flicker-noise signals having persistent long-range correlations. The isotopic signals also displayed asymmetry under time reversal and long-range correlation of the associated magnitude series, therefore it was statistically proved the presence of nonlinearity. Both long-range correlation and nonlinearity in time series have been generally considered as distinctive features of dynamic systems where numerous processes interact by feedback mechanisms, in accordance with the paradigm of self-organized criticality (SOC). Thus, it is here proposed that the system that generated the isotope series worked under conditions of SOC. Since the fluctuations of the isotope series have been related to magma degassing, the previous results place constraints on the dynamics of such process, and suggest that nonequilibrium conditions must be dominant. It remains unclear whether the signature of SOC is directly due to volatile degassing from magma, or if it derives from the interaction between melt and the stress field, which certainly influences magma decompression. The strength of scaling appears to increase after 2002 ( values from 0.8 up to 1.2), focusing on transition of the Etnean system from typical SOC toward conditions of lower criticality. By comparing this transition with those of geophysical observables, it can be suggested that the drop in the rate of magma supply, subsequent to the paroxysms of 2001 and 2002–2003, was the main cause of the scaling change.en
dc.language.isoEnglishen
dc.publisher.nameCopernicus GmbHen
dc.relation.ispartofNonlinear Processes in Geophysicsen
dc.relation.ispartofseries/17 (2010)en
dc.subjectgas geochemistryen
dc.subjectself-organized criticalityen
dc.titleLong-range correlation and nonlinearity in geochemical time series of gas discharges from Mt. Etna, and changes with 2001 and 2002-03 eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber733-751en
dc.identifier.URLwww.nonlin-processes-geophys.net/17/733/2010/en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.5194/npg-17-733-2010en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorPaonita, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Paonita ArticleDef 10.pdfArticle1.53 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on Feb 10, 2021

Page view(s)

90
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric