Options
Franco, Luis
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessLong-term volcano evolution controlled by lateral collapse at Antuco volcano, southern Andes, Chile(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;Beyond the catastrophic environmental effects of large (>1 km3) volcanic landslides, their impact on underlying magmatic systems remains unclear. Chemical variations in post-collapse volcanic products, alongside dramatic eruptive behaviour transitions reported from several volcanoes, imply that surface unloading directly influences subsurface magmatic processes. By combining petrologic data with magma ascent models, we track the post-collapse (<7 ka) magmatic system evolution of Antuco volcano (Chile). During the pre-collapse period, low-explosivity eruptions were sourced from a hotter and deeper storage region. However, the landslide-induced unloading and decompression reactivated a pre-existing, shallower, silicic magma reservoir, favouring more explosive activity. The pre-collapse conditions were restored after edifice regeneration over a few thousand years. Since shallow magma reservoirs are common beneath volcanoes (e.g. in Etna, Villarrica, or Fuji), similar responses could follow future lateral collapses. These findings are relevant when assessing volcanic hazards at gravitationally unstable or collapsed volcanoes on a hundred- to thousand-year timescale.54 24 - PublicationOpen AccessUnrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption?(2018-05)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; New eruptive activity at volcanoes that have been long quiescent poses a significant challenge to hazard assessment, as it requires assessment of how the situation may develop. Such incipient activity is often poorly characterised as most quiescent volcanoes are poorly monitored, especially with respect to gas geochemistry. Here, we report gas composition and flux measurements from a new vent at the onset of eruptive activity at the Nevados de Chillán volcanic complex (Chile) in January-February 2016. The molar proportions of H2O, CO2, SO2, H2S and H2 gases are found to be 98.4, 0.97, 0.11, 0.01 and 0.5 mol % respectively. The mean SO2 flux recorded in early February 2016 during periods of eruptive discharge amounts to 0.4–0.6 kg s1. We show that magmatic gases were involved in this activity, associated with a sequence of eruptions. Tephra ejected by the first blast of 8 January are dominated by lithic fragments of dacitic composition. By contrast the tephra ejected from a subsequent eruption contains both lithic fragments of dense dacite, and a fresher, sparsely vesicular material of basaltic andesite composition. By October 2017, the ejected tephra was again dominated by dense dacitic lithic material. Together with seismic and ground deformation evidence, these observations suggest that a small intrusion of basaltic to andesitic magma at shallow level led to the explosive activity. Our serendipitous survey, right at the onset of eruptive activity, provides a valuable window into the processes of reawakening of a dormant volcano.285 281