Options
Chassignet, Eric
Loading...
Preferred name
Chassignet, Eric
ORCID
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessChallenges and Prospects in Ocean Circulation Models(2019-02-26)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations83 18 - PublicationRestrictedJRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do)(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;We present a new surface-atmospheric dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis (JRA-55), referred to here as JRA55-do. The JRA55-do dataset aims to replace the CORE interannual forcing version 2 (hereafter called the CORE dataset), which is currently used in the framework of the Coordinated Ocean-ice Reference Experiments (COREs) and the Ocean Model Intercomparison Project (OMIP). A major improvement in JRA55-do is the refined horizontal grid spacing (∼ 55 km) and temporal interval (3 hr). The data production method for JRA55-do essentially follows that of the CORE dataset, whereby the surface fields from an atmospheric reanalysis are adjusted relative to reference datasets. To improve the adjustment method, we use high-quality products derived from satellites and from several other atmospheric reanalysis projects, as well as feedback on the CORE dataset from the ocean modelling community. Notably, the surface air temperature and specific humidity are adjusted using multi-reanalysis ensemble means. In JRA55-do, the downwelling radiative fluxes and precipitation, which are affected by an ambiguous cloud parameterisation employed in the atmospheric model used for the reanalysis, are based on the reanalysis products. This approach represents a notable change from the CORE dataset, which imported independent observational products. Consequently, the JRA55-do dataset is more self-contained than the CORE dataset, and thus can be continually updated in near real-time. The JRA55-do dataset extends from 1958 to the present, with updates expected at least annually. This paper details the adjustments to the original JRA-55 fields, the scientific rationale for these adjustments, and the evaluation of JRA55-do. The adjustments successfully corrected the biases in the original JRA-55 fields. The globally averaged features are similar between the JRA55-do and CORE datasets, implying that JRA55-do can suitably replace the CORE dataset for use in driving global ocean–sea-ice models.117 2