Options
Geist, Eric L.
Loading...
5 results
Now showing 1 - 5 of 5
- PublicationOpen AccessCrustal permeability changes inferred from seismic attenuation: Impacts on multi-mainshock sequences(2022-09-08)
; ; ; ; ; ; ; ; ; ; ; We use amplitude ratios from narrowband-filtered earthquake seismograms to measure variations of seismic attenuation over time, providing unique insights into the dynamic state of stress in the Earth’s crust at depth. Our dataset from earthquakes of the 2016–2017 Central Apennines sequence allows us to obtain high-resolution time histories of seismic attenuation (frequency band: 0.5–30 Hz) characterized by strong earthquake dilatation-induced fluctuations at seismogenic depths, caused by the cumulative elastic stress drop after the sequence, as well as damage-induced ones at shallow depths caused by energetic surface waves. Cumulative stress drop causes negative dilatation, reduced permeability, and seismic attenuation, whereas strongmotion surface waves produce an increase in crack density, and so in permeability and seismic attenuation. In the aftermath of the main shocks of the sequence, we show that the M ≥ 3.5 earthquake occurrence vs. time and distance is consistent with fluid diffusion: diffusion signatures are associated with changes in seismic attenuation during the first days of the Amatrice, Visso- Norcia, and Capitignano sub-sequences. We hypothesize that coseismic permeability changes create fluid diffusion pathways that are at least partly responsible for triggering multi-mainshock seismic sequences. Here we show that anelastic seismic attenuation fluctuates coherently with our hypothesis.82 17 - PublicationOpen AccessThe Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)(2021-03-05)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.1610 99 - PublicationOpen AccessCharacteristic Earthquake Magnitude Frequency Distributions on Faults Calculated From Consensus Data in CaliforniaAn estimate of the expected earthquake rate at all possible magnitudes is needed for seismic hazard forecasts. Regional earthquake magnitude frequency distributions obey a negative exponential law (Gutenberg-Richter), but it is unclear if individual faults do. We add three new methods to calculate long-term California earthquake rupture rates to the existing Uniform California Earthquake Rupture Forecast version 3 efforts to assess method and parameter dependence on magnitude frequency results for individual faults. All solutions show strongly characteristic magnitude-frequency distributions on the San Andreas and other faults, with higher rates of large earthquakes than would be expected from a Gutenberg-Richter distribution. This is a necessary outcome that results from fitting high fault slip rates under the overall statewide earthquake rate budget. We find that input data choices can affect the nucleation magnitude-frequency distribution shape for the San Andreas Fault; solutions are closer to a Gutenberg-Richter distribution if the maximum magnitude allowed for earthquakes that occur away from mapped faults (background events) is raised above the consensus threshold of M = 7.6, if the moment rate for background events is reduced, or if the overall maximum magnitude is reduced from M = 8.5. We also find that participation magnitudefrequency distribution shapes can be strongly affected by slip rate discontinuities along faults that may be artifacts related to segment boundaries.
196 102 - PublicationOpen AccessA global probabilistic tsunami hazard assessment from earthquake sources(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.140 1009 - PublicationOpen AccessProbabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;; ;Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.169 39