Options
de' Michieli Vitturi, Mattia
Loading...
Preferred name
de' Michieli Vitturi, Mattia
Email
mattia.demichielivitturi@ingv.it
Staff
staff
ORCID
Scopus Author ID
24450282600
Researcher ID
I-8006-2012
92 results
Now showing 1 - 10 of 92
- PublicationOpen AccessOn the still unpredictable but recurrent lahars: the November 26, 2022 case study at Ischia island (Italy)(2024-03-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Lahars, landslides and debris flows are rapid natural phenomena that can heavily impact on and modify the environment, not only that from which they are triggered but also the one in which they propagate or leave deposits. In particular, lahars can reach significant runout distances from source areas (e.g., several km) and this can mainly depend, among other factors, on the morphology experienced by such propagation. There are cases in the recent history of natural occurrences in which lahars impacted catastrophically on rural and urban settings, such as for example at Nevado del Ruiz volcano (Colombia) in 1985 causing the death of thousands of people living around there. A more recent event occurred on November 26, 2022 at Ischia island (Italy), which is an active volcano particularly subjected to the recurrence of these phenomena. In this case, the emplacement of some lahars caused the death of a few tens of people and the damaging of tens of building, besides the direct impact on local agriculture and tourism. In the nearby Neapolitan volcanic area, several other lahar events occurred in the historical past, not only during but also after or well after explosive eruptions, as the evidence that these phenomena are still to be considered as complex and often unpredictable extreme natural events, also exacerbated by the climate changes, but also that they have some recurrence that cannot be neglected. Such kind of recurrence is mainly related to the local weather, which can even affect the intrinsic behavior of the flows that detach from the source areas and invade the territory. On the other hand, this is not a strictly statistical issue, as there are instrumental measurements that support the fact that heavy rains can exacerbate a landscape already prone to sliding, avalanching, and other catastrophic phenomena. For this, the November 26, 2022 Ischia case study was chosen with the goal of reconstructing the physical features that led to the lahar generation and invasion, which is something that might occur in the future but that should be experienced with a dedicated scientific and territorial consciousness. What was done is an integration of multidisciplinary approaches, corroborated by data from the INGV-OV monitoring network installed on the volcano, capable of detecting the otherwise lost flow timing and dynamical behavior. In particular, the seismic evidence that accompanied the Ischia lahar events, along with the consideration of some lithological features leading to an estimation of flow velocity and dynamic pressure, allow to discriminate multiple lahar pulses over the early morning of November 26, 2022. The main findings of this contribution are that the potential of the Ischia lahars had a sort of recharge timespan which depended on the local weather and lithological features, while the threshold of the lahar trigger depended on the hydrogeological conditions. The seismic reconstruction of the entire event allowed to quantify the first of these two critical issues at Ischia island.48 11 - PublicationOpen AccessOutgassing behaviour during highly explosive basaltic eruptions(2024-01-02)
; ; ; ; ; ; ; ; ; ;; ; ; ;; ; ; Explosivity of basaltic eruptions is related to the efficiency in which exsolved gas can separate from the melt during ascent, which is controlled by magma permeability. However, basaltic pyroclasts from eruptions of varying explosivity can show similar permeability, indicating a possible complex relationship between permeability, outgassing and eruptive style. Here, we provide 3D measurements of basaltic pyroclasts using X-ray microtomography. We investigate the role of permeability and outgassing on magma ascent dynamics by using a numerical conduit model. Among the permeable parameters, bubble number density and friction coefficient largely affect explosivity. However, for fast ascending basaltic magmas, gas-melt coupling is maintained independent of magma permeability. In this case, magma storage conditions may determine eruptive style, driving rapid magma ascent, crystallisation and bubble nucleation, producing a highly explosive eruption. Monitoring parameters which reveal pre-eruptive conditions may assist hazard mitigation, particularly for basaltic systems which exhibit a wide range in eruptive style.151 22 - PublicationOpen AccessLahar events in the last 2000 years from Vesuvius eruptions – Part 3: Hazard assessment over the Campanian Plain(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In this study we present a novel general methodology for probabilistic volcanic hazard assessment (PVHA) for lahars. We apply the methodology to perform a probabilistic assessment in the Campanian Plain (southern Italy), focusing on syn-eruptive lahars from a reference size eruption from Somma–Vesuvius. We take advantage of new field data relative to volcaniclastic flow deposits in the target region (Di Vito et al., 2024b) and recent improvements in modelling lahars (de' Michieli Vitturi et al., 2024). The former allowed defining proper probability density functions for the parameters related to the flow initial conditions, and the latter allowed computationally faster model runs. In this way, we are able to explore the effects of uncertainty in the initial flow conditions on the invasion of lahars in the target area by sampling coherent sets of values for the input model parameters and performing a large number of simulations. We also account for the uncertainty in the position of lahar generation by running the analysis on 11 different catchments threatening the Campanian Plain. The post-processing of the simulation outputs led to the production of hazard curves for the maximum flow thickness reached on a grid of points covering the Campanian Plain. By cutting the hazard curves at selected threshold values, we produce a portfolio of hazard maps and probability maps for the maximum flow thickness. We also produce hazard surface and probability maps for the simultaneous exceeding of pairs of thresholds in flow thickness and dynamic pressure. The latter hazard products represent, on one hand, a novel product in PVHA for lahars and, on the other hand, a useful means of impact assessment by assigning a probability to the occurrence of lahars that simultaneously have a relevant flow thickness and large dynamic pressure.218 27 - PublicationOpen AccessDeveloping hazard scenarios from monitoring data, historical chronicles, and expert elicitation: a case study of Sangay volcano, Ecuador(2024)
; ; ; ; ; ; ; ; ;; ;; ;; ; Sangay volcano is considered as one of the most active volcanoes worldwide. Nevertheless, due to its remote location and low-impact eruptions, its eruptive history and hazard scenarios are poorly constrained. In this work, we address this issue by combining an analysis of monitoring data and historical chronicles with expert elicitation. During the last 400 years, we recognize periods of quiescence, weak, and enhanced eruptive activity, lasting from several months to several years, punctuated by eruptive pulses, lasting from a few hours to a few days. Sangay volcano has been mainly active since the seventeenth century, with weak eruptive activity as the most common regime, although there have also been several periods of quiescence. During this period, eruptive pulses with VEI 1–3 occurred mainly during enhanced eruptive activity and produced far-reaching impacts due to ash fallout to the west and long-runout lahars to the south-east. Four eruptive pulse scenarios are considered in the expert elicitation: strong ash venting (SAV, VEI 1–2), violent Strombolian (VS, VEI 2–3), sub-Plinian (SPL, VEI 3–4), and Plinian (PL, VEI 4–5). SAV is identified as the most likely scenario, while PL has the smallest probability of occurrence. The elicitation results show high uncertainty about the probability of occurrence of VS and SPL. Large uncertainties are also observed for eruption duration and bulk fallout volume for all eruptive scenarios, while average column height is better characterized, particularly for SAV and VS. We interpret these results as a consequence of the lack of volcano-physical data, which could be reduced with further field studies. This study shows how historical reconstruction and expert elicitation can help to develop hazard scenarios with uncertainty assessment for poorly known volcanoes, representing a first step towards the elaboration of appropriate hazard maps and subsequent planning.53 19 - PublicationOpen AccessELICIPY 1.0: A Python online tool for expert elicitation(2024)
; ; ; ; ; ; ; Structured expert judgment is crucial when dealing with significant epistemic and aleatoric uncertainties, particularly in probabilistic hazard assessments, where decisions based on uncertain information are often critical. In structured expert elicitations, participants are asked to quantify their uncertainty judgments by providing their percentile estimates of numerical values for a set of questions. More specifically, performance-based elicitations start with ‘‘seed’’ questions for determining experts’ uncertainty quantification skill. The performance scores are thus used to define each expert’s weight to be applied when considering their judgments on ‘‘target’’ questions, i.e., the actual variables of interest for the case study. In this paper we describe ELICIPY, a new Python tool which allows to perform expert elicitation sessions in a framework that covers both the questionnaire collection and the analysis parts, an approach that simplifies the work normally done by the analyst(s). This is achieved through the automatic generation of online webforms to collect the experts’ answers, their check for consistency and, finally, their analysis using different weighting schemes. The tool automatically produces outputs in different formats and creates a pptx presentation file available just after the collection of the answers.76 20 - PublicationOpen AccessThe 23–24 March 2021 lava fountain at Mt Etna, Italy(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In 2021, more than 50 paroxysmal episodes occurred at the South-East Crater (SEC) of Mt Etna, Italy. The 23–24 March lava fountain was one of the longest episodes and began with weak Strombolian explosions, gradually transitioning to lava fountaining. The eruption intensity then dropped more slowly than in previous episodes, resulting in pulsating Strombolian explosions dominated by ash emission. Thirty-four tephra samples were used to reconstruct the fallout dispersal and estimate the total erupted mass. Grain size, textural, petrological and geochemical analyses indicate different features and were compared with the gas phase ( SO2 and HCl) in the volcanic plume. By applying stochastic global optimization to simulations of the temporal evolution of the eruption column height and tephra dispersal and deposition, the total erupted mass retrieved (6.76 × 108 kg) matches well the total erupted mass estimation by the ground-based deposit (8.03 ± 2.38 × 108 kg), reducing the column height throughout the episode from 6.44 to 4.5 km above sea level and resulting in a mass eruption rate ranging from 1.96 × 105 to 8.18 × 103 kg/s. The unusual duration of the March episode and the characteristics of the erupted products point to the change in explosive style and magma fragmentation from fountaining to ash emission phases, associated with a slower magma supply inducing a change in magma rheology and a final, prolonged ash generation. Furthermore, this study showed that using observational data and the variation in eruption source parameters for numerical simulations can improve the accuracy of predicting the dispersal plume, thus mitigating the potential impact of longer paroxysmal episodes.181 12 - PublicationOpen AccessLahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach(2024)
; ; ; ; ; ; ; ; ; In this paper we present a new model for the simulation of lahars based on the depth-averaged code IMEX-SfloW2D with new governing and constitutive equations introduced to better describe the dynamics of lahars. A thorough sensitivity analysis is carried out to identify the critical processes (such as erosion and deposition) and parameters (both numerical and physical) controlling lahar runout using both synthetic and real case topographies. In particular, an application of the model to a syn-eruptive lahar from a reference size eruption from Somma–Vesuvius, affecting the Campanian Plain (southern Italy), described in Di Vito et al. (2024), is used in this work for the sensitivity analysis. Effects of erosion and deposition are investigated by comparing simulations with and without these processes. By comparing flow thickness and area covered by the flow and their evolution with time, we show that the modelling of both the processes is important to properly simulate the effects of the bulking and debulking as well as the associated changes in rheology. From a computational point of view, the comparisons of simulations obtained for different numerical grids (from 25 to 100 m), scheme order, and grain size discretization were useful to find a good compromise between resolution and computational speed. The companion paper by Sandri et al. (2024) shows an application of the presented model for probabilistic volcanic hazard assessment for lahars from Vesuvius deposits in the Neapolitan area.148 21 - PublicationOpen AccessLahar events in the last 2000 years from Vesuvius eruptions – Part 1: Distribution and impact on densely inhabited territory estimated from field data analysis(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Lahars represent some of the most dangerous phenomena in volcanic areas for their destructive power, causing dramatic changes in the landscape with no premonitory signs and impacting the population and infrastructure. In this regard, the Campanian Plain turns out to be very prone to the development of these phenomena, since the slopes of the Somma–Vesuvius and Campi Flegrei volcanoes, along with the Apennine reliefs, are mantled by pyroclastic deposits that can be easily remobilized, especially after intense and/or prolonged rainfall. This study focuses on the analysis of pyroclastic fall and flow deposits and of the syn- and post-eruptive lahar deposits related to two sub-Plinian eruptions of Vesuvius in 472 CE (Pollena) and 1631. To begin with, historical and field data from the existing literature and from hundreds of outcrops were collected and organized into a database, which was integrated with several new pieces of data. In particular, stratigraphic, sedimentological (facies analysis and laboratory), and archeological analyses were carried out, in addition to rock magnetic investigations and impact parameter calculations. The new data are also referenced to the finding of ash beds in more distal areas, which were included in new isopach maps for the two sub-Plinian eruptions. The results show that for both eruptions the distribution of the primary deposits is wider than previously known. A consequence of these results is that a wider areal impact should be expected in terms of civil protection, as the sub-Plinian scenario is the reference one for a future large eruption of Vesuvius. Such a distribution of the pyroclastic deposits directly affects the one of the lahar deposits, also because a significant remobilization took place during and after the studied eruptions, which involved distal phreatomagmatic ash. From these integrated analyses, it was possible to constrain the timing of the deposition and the kind of deposits remobilized (pyroclastic fall vs. flow), and it was possible to calculate the velocities and dynamic pressures of the lahars and ultimately infer the lahar transport and emplacement mechanisms. The multidisciplinary approach adopted in this work shows how it is crucial to assess the impact of lahars in densely populated areas even at distances of several to tens of kilometers from active volcanoes. This especially applies to large parts of the densely populated areas around Somma–Vesuvius up to the nearby Apennine valleys.228 3 - PublicationOpen AccessBenchmarking a new 2.5D shallow water model for lava flowsLava flows associated with effusive volcanic eruptions require accurate modelling in order to forecast potential paths of destruction. This study presents a new depth-averaged model that overcomes the classical shallow water hypothesis by incorporating several enhancements, allowing for a more precise representation of the flow dynamics and behaviour: (i) a parabolic profile which captures the vertical variations in velocity within the flow; (ii) a non-constant vertical profile for temperature, enabling a more realistic representation of thermal gradients within the flowing lava; (iii) a viscoplastic temperature-dependent viscosity model to account for the non-Newtonian behaviour of lava; (iv) a transport equation for temperature accounting for the thermal heat exchanges with the environment and the soil. The first two modifications allow us to describe, under reasonable assumptions, the vertical structure of the flow, and for this reason, we put our model in the class of 2.5D models. To assess the performance of our modified model, comprehensive benchmark tests are conducted using both laboratory experiments and real-world lava flow data related to the 2014–2015 Pico do Fogo, Cape Verde, effusive eruption. The benchmarking analysis demonstrates that this model accurately reproduces, with short execution times, essential flow features such as flow front advancement and cooling processes.
76 30 - PublicationOpen AccessIMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and waterWe present developments to the physical model and the open-source numerical code IMEX_SfloW2D (de' Michieli Vitturi et al., 2019). These developments consist of a generalization of the depth-averaged (shallow-water) fluid equations to describe a polydisperse fluid–solid mixture, including terms for sedimentation and entrainment, transport equations for solid particles of different sizes, transport equations for different components of the carrier phase, and an equation for temperature/energy. Of relevance for the simulation of volcanic mass flows, vaporization and entrainment of water are implemented in the new model. The model can be easily adapted to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). The numerical algorithm and the code have been improved to allow for simulation of sub- to supercritical regimes and to simplify the setting of initial and boundary conditions. The code is open-source. The results of synthetic numerical benchmarks demonstrate the robustness of the numerical code in simulating transcritical flows interacting with the topography. Moreover, they highlight the importance of simulating transient in comparison to steady-state flows and flows in 2D versus 1D. Finally, we demonstrate the model capabilities to simulate a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles, through application to Krakatau volcano, showing the relevance, at a large scale, of non-linear fluid dynamic features, such as hydraulic jumps and von Kármán vortices, to flow conditions such as velocity and runout.
68 29