Options
Cretì, Sergio
Loading...
Preferred name
Cretì, Sergio
ORCID
8 results
Now showing 1 - 8 of 8
- PublicationOpen AccessThe Mediterranean Forecasting System – Part 1: Evolution and performance(2023-10-25)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ;The Mediterranean Forecasting System produces operational analyses and reanalyses and 10 d forecasts for many essential ocean variables (EOVs), from currents, temperature, salinity, and sea level to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24 (approximately 4 km) and with 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO), and the wave (WAV) components, consisting of both numerical models and data assimilation modules. The three components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10 d forecasts and analyses are produced by the PHY, BIO, and WAV operational systems, while reanalyses are produced every 3 years for the past 30 years and are extended (yearly). The modelling systems, their coupling strategy, and their evolutions are illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated over a common 3-year period (2018–2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses.38 10 - PublicationOpen AccessThe CMEMS Mediterranean and Black Sea analysis and forecasting physical systems: description and skill assessment(2020-02-16)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Mediterranean and Black Sea operational forecasting systems are developed and continuously improved in the context of the Copernicus Marine Environment and Monitoring Service (CMEMS). The two systems operationally produce analyses and 10-days forecasts of the main physical parameters (Temperature, Salinity, Sea Level, Currents, Mixed Layer Depth) with a resolution of about 4.5km in the horizontal over 141 vertical levels in the Mediterranean Sea, and about 3km in the horizontal over 31 vertical levels in the Black Sea. The hydrodynamic numerical solutions are based on the NEMO (Nucleus for European Modelling of the Ocean) model coupled to a 3D variational data assimilation method (3DVAR) able to assimilate in-situ temperature and salinity profiles, satellite along-track sea level anomaly and sea surface temperature (in the Mediterranean Sea a nudging to satellite SST-L4 dataset is provided). The Mediterranean system is also 2-way online coupled with the WW3 (WaveWatch3) wave model to better represent the surface drag coefficient. The two systems are forced by 1/8o degree ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The systems are validated in near real time and the quality of the products is monitored through regional websites (http://medfs.cmcc.it/ and http://bsfs.cmcc.it/) showing the analysis and forecast field maps at different depths (in case of 3D variables) as well as a weekly validation of model analysis compared with available observations. The focus of this work is to present the latest modelling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with in-situ and satellite observational datasets.81 17 - PublicationOpen AccessThe Copernicus Marine Service ocean forecasting system for the Mediterranean Sea(2019-05-06)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;; ;The Mediterranean Monitoring and Forecasting Center (MED-MFC) is part of the Copernicus Marine Environment and Monitoring Service (CMEMS) and provides regular and systematic information on the time-evolving Mediterranean Sea physical (including waves) and biogeochemical state. The systems consist of 3 components: 1) Med-Physics, a numerical ocean prediction systems, based on NEMO model, that operationally produces analyses, reanalysis and short term forecasts of the main physical parameters; 2) Med-Biogeochemistry, a biogeochemical analysis, reanalysis and forecasting system based on the Biogeochemical Flux Model (BFM) which provides information on chlorophyll, phosphate, nitrate, primary productivity, oxygen, phytoplankton biomass, pH and pCO2; 3) Med-Waves based on WAM model and providing analysis, forecast and reanalysis products for waves. The systems have been recently upgraded at a resolution of 1/24 degree in the horizontal and 141 vertical levels. The Med-Physics analysis and forecasting system is composed by the hydrodynamic model NEMO 2-way coupled with the third-generation wave model WaveWatchIII and forced by ECMWF atmospheric fields. The model solutions are corrected by the 3DVAR data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle of sea level anomaly and vertical profiles of temperature and salinity. The model has a non-linear explicit free surface and it is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. The biogeochemical analysis and forecasts are produced by means of the MedBFM v2.1 modeling system (i.e. the physical-biogeochemical OGSTM-BFM model coupled with the 3DVARBIO assimilation scheme) forced by the outputs of the Med-Physics product. Seven days of analysis/hindcast and ten days of forecast are bi-weekly produced on Wednesday and on Saturday, with the assimilation of surface chlorophyll concentration from satellite observations. In-situ data are mainly used to estimate model uncertainty at different spatial scales. The Med-Waves modelling system is based on the WAM Cycle 4.5.4 wave model code. It consists of a wave model grid covering the Mediterranean Sea at a 1/24° horizontal resolution, nested to a North Atlantic grid at a 1/6° resolution. The system is forced by ECMWF winds at 1/8°. Refraction due to surface currents is accounted by the system which assimilates altimeter along-track significant wave height observations. On a daily basis, it provides 1-day analysis and 5-day forecast hourly wave parameters. Currently, wave buoy observations of significant wave height and mean wave period along with satellite observations are used to calibrate and validate the Med-waves modelling system.111 67 - PublicationOpen AccessThe CMEMS Mediterranean analysis and forecasting physical system latest upgrades: description and skill assessment(2019-04-07)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Mediterranean Analysis and Forecasting System is a numerical ocean prediction system that operationally produces analyses and 10 days forecasts of the main physical parameters for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). The system is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third-generation wave model WW3 (WaveWatchIII) and forced by ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The forecast initial conditions are produced by a 3D variational data assimilation system which considers a daily assimilation cycle of Sea Level Anomaly, vertical profiles of Temperature and Salinity from ARGO and ship CTDs and heat flux corrections with satellite SST. The system has been recently upgraded by increasing the grid resolution from 1/16 to 1/24 degree in the horizontal, thus becoming fully mesoscale resolving and from 72 to 141 vertical levels; by increasing the number of fresh water river inputs and by updating the data assimilation scheme. Additional developments will be implemented in the next release of the operational system (April 2019) by including an upgraded SST relaxation to satellite observations close to midnight and the implementation of the Dardanelles strait as a lateral open boundary condition. The focus of this work is to present the latest modeling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with independent (insitu coastal moorings) and quasi-independent (insitu vertical profiles and satellite) datasets.92 29 - ProductOpen AccessMediterranean Sea Analysis and Forecast (CMEMS MED-Currents 2016-2019)(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;47 358 - ProductOpen AccessMediterranean Sea Analysis and Forecast (CMEMS MED-Currents 2016-2019)(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;79 112 - PublicationOpen AccessSeaConditions: a web and mobile service for safer professional and recreational activities in the Mediterranean Sea(2017-04-13)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;Reliable and timely information on the environmental conditions at sea is key to the safety of professional and recreational users as well as to the optimal execution of their activities. The possibility of users obtaining environmental information in due time and with adequate accuracy in the marine and coastal environment is defined as sea situational awareness (SSA). Without adequate information on the environmental meteorological and oceanographic conditions, users have a limited capacity to respond, which has led to loss of lives and to large environmental disasters with enormous consequent damage to the economy, society and ecosystems. Within the framework of the TESSA project, new SSA services for the Mediterranean Sea have been developed. In this paper we present SeaConditions, which is a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. Model forecasts and satellite products from operational services, such as ECMWF and CMEMS, can be visualized in SeaConditions. In addition, layers of information related to bathymetry, sea level and ocean-colour data (chl a and water transparency) are displayed. Ocean forecasts at high spatial resolutions are included in the version of SeaConditions presented here. SeaConditions provides a user-friendly experience with a fluid zoom capability, facilitating the appropriate display of data with different levels of detail. SeaConditions is a single point of access to interactive maps from different geophysical fields, providing high-quality information based on advanced oceanographic models. The SeaConditions services are available through both web and mobile applications. The web application is available at www.sea-conditions.com and is accessible and compatible with present-day browsers. Interoperability with GIS software is implemented. User feedback has been collected and taken into account in order to improve the service. The SeaConditions iOS and Android apps have been downloaded by more than 105 000 users to date (May 2016), and more than 100 000 users have visited the web version.122 55 - PublicationOpen AccessMediterranean monitoring and forecasting operational system for Copernicus Marine Service(2016-04-17)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ;; ;; ; ; ;; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.144 27