Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4599
Authors: Toyos, G.* 
Gunasekera, R.* 
Zanchetta, G.* 
Oppenheimer, C.* 
Sulpizio, R.* 
Favalli, M.* 
Pareschi, M. T.* 
Title: GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy. II: Velocity and Dynamic Pressure
Journal: Earth Surface Processes and Landforms 
Series/Report no.: 11/33(2008)
Publisher: Wiley Inter Science
Issue Date: 15-Oct-2008
DOI: 10.1002/esp.1640
Keywords: debris flows
mobility
velocity
GIS
hazard assessment
Subject Classification04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk 
Abstract: The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for hazard assessment and vulnerability analysis. We present here an approach to predict the velocity of debris flows on the basis of the energy line concept. First, we obtained empirically and field-based estimates of debris flow peak discharge, mean velocity at peak discharge and velocity, at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow velocities can be predicted with an associated uncertainty of less than 30% and less than 3 m s-1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addition, the GIS implementation constitutes a useful decision-support tool for real-time hazard mitigation. Copyright © 2008 John Wiley & Sons, Ltd.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
ESPL_Toyos et al_2008.pdf617.08 kBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations 50

12
checked on Feb 10, 2021

Page view(s) 50

192
checked on Apr 24, 2024

Download(s)

19
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric