Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14785
Authors: Tibaldi, Alessandro* 
Corti, Noemi* 
De Beni, Emanuela* 
Bonali, Fabio Luca* 
Falsaperla, Susanna* 
Langer, Horst* 
Neri, Marco* 
Cantarero, Massimo* 
Reitano, Danilo* 
Fallati, Luca* 
Title: Mapping and evaluating kinematics and the stress and strain field at active faults and fissures: a comparison between field and drone data at the NE rift, Mt Etna (Italy)
Journal: Solid Earth 
Series/Report no.: /12 (2021)
Publisher: EGU - Copernicus
Issue Date: 13-Apr-2021
DOI: 10.5194/se-12-801-2021
Keywords: Etna
drone data
fractures
NE rift
SfM technique
Subject Classification04.08. Volcanology 
Abstract: We collected drone data to quantify the kinematics at extensional fractures and normal faults, integrated this information with seismological data to reconstruct the stress field, and critically compared the results with previous fieldwork to assess the best practice. As a key site, we analyzed a sector of the northeast rift of Mt Etna, an area affected by continuous ground deformation linked to gravity sliding of the volcano’s eastern flank and dike injections. The studied sector is characterized also by the existence of eruptive craters and fissures and lava flows. This work shows that this rift segment is affected by a series of NNE- to NE-striking, parallel extensional fractures characterized by an opening mode along an average N105.7 vector. The stress field is characterized by a Hmin trending northwest–southeast. Normal faults strike parallel to the extensional fractures. The extensional strain obtained by cumulating the net offset at extensional fractures with the fault heave gives a stretching ratio of 1.003 in the northeastern part of the study area and 1.005 in the southwestern part. Given a maximum age of 1614 CE for the offset lavas, we obtained an extension rate of 1.9 cm yr􀀀1 for the last 406 years. This value is consistent with the slip along the Pernicana Fault system, confirming that the NE rift structures accommodate the sliding of the eastern flank of the volcano.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
se-12-801-2021.pdfOpen Access21.69 MBAdobe PDFView/Open
Show full item record

Page view(s)

753
checked on Apr 17, 2024

Download(s)

29
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric