Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14463
Authors: Stagno, Vincenzo* 
Kono, Yoshio* 
Stopponi, Veronica* 
Masotta, Matteo* 
Scarlato, Piergiorgio* 
Manning, Craig E* 
Title: The Viscosity of Carbonate‐Silicate Transitional Melts at Earth's Upper Mantle Pressures and Temperatures, Determined by the In Situ Falling‐Sphere Technique
Publisher: John Wiley & Sons
Issue Date: 2020
ISBN: 9781119508267
Keywords: magma, viscosity, redox, carbonate
Subject Classification04.01. Earth Interior 
Abstract: The circulation of carbon in Earth’s interior occurs through the formation, migration, and ascent of CO2‐ bearing magmas throughout the convective mantle. Their chemical composition spans from carbonatitic to kimberlitic as a result of either temperature and pressure variations or local redox conditions at which partial melting of carbonated mantle mineral assemblages occurs. Previous experiments that focused on melting relations of synthetic CO2‐bearing mantle assemblages revealed the stability of carbonate‐silicate melts, or transitional melts, that have been generally described to mark the chemical evolution from kimberlitic to carbonatitic melts at mantle conditions. The migration of these melts upward will depend on their rheology as a function of pressure and temperature. In this study, we determined the viscosity of carbonate‐silicate liquids (~18 wt% SiO2 and 22.54 wt% CO2) using the falling‐sphere technique combined with in situ synchrotron X‐ray radiography. We performed six successful experiments at pressures between 2.4 and 5.3 GPa and temperature between 1565 °C and 2155 °C. At these conditions, the viscosity of transitional melts is between 0.02 and 0.08 Pa˙s; that is, about one order of magnitude higher than what was determined for synthetic carbonatitic melts at similar P‐T conditions, likely due to the polymerizing effect of the SiO2 component in the melt.
Appears in Collections:Book chapters

Files in This Item:
File Description SizeFormat
Stagno et al_AGUCh19_2020.pdf342.28 kBAdobe PDFView/Open
Show full item record

Page view(s)

61
checked on Apr 20, 2024

Download(s)

14
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric