Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13581
Authors: Civetta, Lucia* 
Orsi, Giovanni* 
Pappalardo, Lucia* 
Fisher, Richard V* 
Heiken, G* 
Ort, Michael* 
Title: Geochemical zoning, mingling, eruptive dynamics and depositional processes — the Campanian Ignimbrite, Campi Flegrei caldera, Italy
Journal: Journal of Volcanology and Geothermal Research 
Series/Report no.: /75 (1997)
Issue Date: 1997
DOI: 10.1016/S0377-0273(96)00027-3
Abstract: The Campanian Ignimbrite (CI) is a large-volume trachytic tuff erupted at 37 ka from the Campi Flegrei and composed of a fallout deposit overlain by ignimbrite. The ignimbrite was spread over an area of about 30,000 km2 including the Campanian Plain and the Apennine Mountains, with ridges over 1000 m a.s.l. The pumice fragments of the CI range in composition from trachyte to phonolitic-trachyte (DI = 75-90). They do not show any systematic compositional variation with stratigraphic height, but the analyzed sections can be divided into three groups on the basis of chemical composition of pumices. Least-evolved pumices (DI = 75-83) occur in the ignimbrite in the central sector of the Campanian Plain up to 30 km from the vent, while the most-differentiated pumices (DI = 88-90) characterize the cogenetic fallout deposit and the ignimbrite in the western sector of the Campanian Plain, on the Tyrrhenian scarp of the Apennines between Caserta and Mt. Maggiore, on Roccamonfina volcano, and on the Sorrento Peninsula, up to 50 km from the source. Pumice fragments of intermediate composition (DI = 84-87) occur in the ignimbrite on the Apennine Mountains and Roccamonfina volcano, up to 65 km from the vent. In one exposure at Mondragone, at the base of a calcareous ridge, an ignimbrite with pumices of most-evolved composition is overlain by an ignimbrite with pumices of intermediate composition. The observed compositional variation between most-and least-evolved ignimbrite was generated in part by crystal-liquid fractionation, although other magmatic processes such as syn-eruptive mingling between most-and least-evolved magmas accounts for the mineralogical disequilibria and for the bimodality of the glass compositions in the intermediate-composition rocks. Pumice Sr-isotope ratios are positively correlated with degree of differentiation. Feldspar crystals separated from pumices of different compositions have a homogeneous Sr-isotope composition similar to that of the least-evolved pumices. Interaction between fluids and strongly fractionated Sr-poor less-dense magma can account for these isotopic features. Geochemical, mineralogic, stratigraphic and volcanologic data, together with the stratigraphic relations between most-, intermediate-and least-evolved ignimbrite as detected at Mondragone and from bore-hole drillings suggest that: (1) the CI magmatic system was composed of two distinct magma layers - the upper layer was more differentiated and homogeneous in composition, while the deeper was less evolved and slightly zoned; and (2) the CI was mostly emplaced in three main pulses of pyroclastic flows that tapped the chamber at variable levels and with distinct withdrawal dynamics. The eruption began with emission of the most differentiated magma, which gave rise to the fallout deposit. It continued with generation of expanded, turbulent pyroclastic flows that reached the Sorrento Peninsula in the southeast and Roccamonfina volcano in the northwest. These flows, whose thickness was greater than the overtopped relief, were able to travel over the water of the bay of Naples. Subsequently an intermediate-composition magma resulting from mingling of different portions of the magma chamber generated similar flows that spread radially and traveled not less than 65 km from the vent. During the last pulse the least-evolved magma was tapped and generated flows that spread within the Campanian Plain. Variation in eruptive dynamics and composition of magma during the course of the eruption likely reflected variations of both geometry of vent and plumbing system, and efficiency of water/magma interaction, which in turns affected the dynamics of the magma chamber and the withdrawal mechanism, and resulted from the dynamics of the caldera collapse.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
JVGR97IC.pdf4.63 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

212
checked on Feb 10, 2021

Page view(s)

71
checked on Apr 20, 2024

Download(s)

3
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric