Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9547

Authors: Akinci, A.*
Malagnini, L.*
Herrmann, R. B.*
Kalafat, D.*
Title: High-Frequency Attenuation in the Lake Van Region, Eastern Turkey
Title of journal: Bulletin of the Seismological Society of America
Publisher: Seismological Society of America
Issue Date: 2014
DOI: 10.1785/0120130102
Keywords: Earthquake-induced ground motion, Lake Van, Crustal attenuation
Abstract: We provide a complete description of the characteristics of excitation and attenuation of the ground motion in the Lake Van region (eastern Turkey) using a data set that includes three-component seismograms from the 23 October 2011 Mw 7.1 Van earthquake, as well as its aftershocks. Regional attenuation and source scaling are parameterized to describe the observed ground motions as a function of distance, frequency, and magnitude. Peak ground velocities are measured in selected narrow frequency bands from 0.25 to 12.5 Hz; observed peaks are regressed to define a piecewise linear regional attenu- ation function, a set of excitation terms, and a set of site response terms. Results are modeled through random vibration theory (see Cartwright and Longuet-Higgins, 1956). In the log–log space, the regional crustal attenuation is modeled with a bilinear geo- metrical spreading g r characterized by a crossover distance at 40 km: g r ∝ r^−1 fits our results at short distances (r < 40 km), whereas g r ∝ r^−0.3 is better at larger distances (40 < r < 200 km). A frequency-dependent quality factor, Q f =100( f/fref)^ 0:43 (in which fref 1.0 Hz), is coupled to the geometrical spreading. Because of the inherent trade-off of the excitation/attenuation parameters (Δσ and κ), their specific values strongly depend on the choice made for the stress drop of the smaller earthquakes. After choosing a Brune stress drop ΔσBrune 4 MPa at Mw 3:5, we were able to define (1) an effective high frequency, distance- and mag- nitude-independent roll-off spectral parameter, κeff = 0:03 s and (2) a size-dependent stress-drop parameter, which increases with moment magnitude, from ΔσBrune 4 MPa at Mw 3.5 to ΔσBrune 20 MPa at Mw 7.1. The set of parameters mentioned here may be used in order to predict the earthquake-induced ground motions expected from future earthquakes in the region surrounding Lake Van.
Appears in Collections:04.06.04. Ground motion
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Akinci_etal_BSSA2014.pdf1.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA