Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9470
DC FieldValueLanguage
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2015-04-03T08:43:43Zen
dc.date.available2015-04-03T08:43:43Zen
dc.date.issued2014-01-31en
dc.identifier.urihttp://hdl.handle.net/2122/9470en
dc.description.abstractThe effect of crystal size of bimodal suspensions on rheology of magmas at strain rates between 0 and 1 s−1 is studied. Suspensions consist of silicon oil and two populations of natural crystals with size 63–125 and 250–500 µm mixed in different proportions; the total solid fraction ϕ of the mixtures is between 0.25 and 0.5. At ϕ ≤ 0.4, finer, coarser, and bimodal suspensions display comparable viscosities. At ϕ ≥ 0.4, the viscosity of the bimodal suspensions is larger than that of the unimodal ones. The bimodal suspension, made mainly of finer crystals, shows a stronger increase of viscosity with ϕ. The addition of finer crystals to a suspension of coarser ones produces a more pronounced increase of viscosity with respect to suspensions of coarse or fine crystals alone, and of finer crystals with added coarser ones. The bimodal suspensions of coarser crystals develops yield stress at ϕ ≥ 0.25, the others at ϕ ≥ 0.4. It is modeled the ascent velocity in a 20 m wide dike of magmas with bimodal and unimodal populations of crystals of different size. For ϕ ≤ 0.4, the crystal size has not effects on the ascent velocity of magmas. For ϕ ≥ 0.4, the velocity of a magma with growing phenocrystals decreases as ϕ increases less than that of a magma with forming microlites, and more of a magma with microlites and growing phenocrystals. A magma with phenocrystals and forming microlites has the lowest ascent velocity.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries1/15(2014)en
dc.subjectrheologyen
dc.subjectmagmatic suspensionsen
dc.subjectdikeen
dc.subjectanalogue modelen
dc.titleRheology of bimodal crystals suspensions: Results from analogue experiments and implications for magma ascenten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber284-291en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/2013GC005078/abstracten
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1002/2013GC005078en
dc.relation.referencesAncey, C. (2007), Plasticity and geophysical flows: A review, J. Non-Newtonian Fluid Mech., 142, 4–35, doi:10.1016/j.jnnfm.2006.05.005. CrossRef,CAS,Web of Science® Times Cited: 91 Armienti, P. (2008), Decryption of igneous rock textures; crystal size distribution tools, in Minerals, Inclusions and Volcanic Processes, Rev. Mineral. Geochem., 69, 623–649, doi:10.2138/rmg.2008.69.16. CrossRef,CAS,Web of Science® Times Cited: 16 Barnes, H. A. (2003), A review of the rheology of filled viscoelastic systems, Rheol. Rev., 1, 1–36. Caricchi, L., L. Burlini, P. Ulmer, T. Gerya, M. Vassalli, and P. Papale (2007), Non-Newtonian rheology of crystalbearing magmas and implications for magma ascent dynamics, Earth Planet. Sci. Lett., 264, 402–419, doi:10.1016/j.epsl.2007. 09.032. CrossRef,CAS,Web of Science® Times Cited: 89,ADS Cashman, K., and J. Blundy (2000), Degassing and crystallization of ascending andesite and dacite, Philos. Trans. R. Soc. London A, 358, 1487–1513, doi:10.1098/rsta.2000.0600. CrossRef,CAS,ADS Castruccio, A., A. C. Rust, and R. S. J. Sparks (2010), Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents, Earth Planet. Sci. Lett., 297, 471–480, doi:10.1016/j.epsl.2010.06.051. CrossRef,CAS,Web of Science® Times Cited: 12,ADS Chong, J. S., E. B. Christiansen, and A. D. Baer (1971), Rheology of concentrated suspensions, J. Appl. Polym. Sci., 15, 2007–2021. Direct Link: AbstractPDF(745K)ReferencesWeb of Science® Times Cited: 372 Cimarelli, C., A. Costa, S. Mueller, and H. M. Mader (2011), Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments, Geochem. Geophys. Geosyst., 12, Q07024, doi:10.1029/2011GC003 606. Direct Link: AbstractFull Article (HTML)PDF(2249K)ReferencesWeb of Science® Times Cited: 12 Costa, A., L. Caricchi, and N. Bagdassarov (2009), A model for rheology of particle-bearing suspensions and partially molten rocks, Geochem. Geophys. Geosyst., 10, Q03010, doi:10.1029/2008GC002138. Direct Link: AbstractFull Article (HTML)PDF(531K)ReferencesWeb of Science® Times Cited: 33 Couch, S., R. S. J. Sparks, and M. R. Carroll (2003), The kinetics of degassing-induced crystallisation at Soufriere Hills Volcano, Montserrat, J. Petrol., 44, 1477–1502. CrossRef,CAS,Web of Science® Times Cited: 107 Cox, M. R., and B. Budhu (2008), A practical approach to grain shape quantification, Eng. Geol., 96, 1–16. CrossRef,Web of Science® Times Cited: 14 Del Gaudio, P., G. Ventura, and J. Taddeucci (2013), The effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: Results from analogue experiments, Geochem. Geophys. Geosyst., 14, 2661–2669, doi:10.1002/ggge.20172. Direct Link: AbstractFull Article (HTML)PDF(797K)ReferencesWeb of Science® Farris, R. J. (1968), Prediction of the viscosity of multimodal suspensions from unimodal viscosity data, Trans. Soc. Rheol., 12, 281–301. CrossRef,ADS Forien, M., L. Arbaret, A. Burgisser, and R. Champallier (2011), Experimental constrains on shear-induced crystal breakage in magmas, J. Geophys. Res., 116, B08217, doi:10.1029/2010JB008026. ADS Giordano, D., J. K. Russell, and D. B. Dingwell (2008), Viscosity of magmatic liquids: A model, Earth Planet. Sci. Lett., 271, 123–134, doi:10.1016/j.epsl.2008.03.038. CrossRef,CAS,Web of Science® Times Cited: 224,ADS Hastie, W. W., M. K. Watkeys, and C. Aubourg (2013), Characterisation of grain-size, shape and orientation of plagioclase in the Rooi Rand dyke swarm, South Africa, Tectonophysics, 583, 145–157, doi:10.1016/j.tecto.2012.1 0.035. CrossRef,Web of Science®,ADS Herschel, W. H., and R. Bulkley (1926), Konsistenzmessungen von Gummi-Benzollösungen, Kolloid Z., 39, 291–300, doi:10.1007/BF01432034. CrossRef Ishibashi, H., and H. Sato (2007), Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan, J. Volcanol. Geotherm. Res., 160, 223–238, doi:10.1016/j.jvolgeores.2006.10.001. CrossRef,CAS,Web of Science® Times Cited: 33,ADS Krieger, I. M., and T. J. Dougherty (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol., 3, 137–152. CrossRef,CAS,ADS Lejeune, A., and P. Richet (1995), Rheology of crystal-bearing silicate melts: An experimental study at high viscosity, J. Geophys. Res., 100, 4215–4229, doi:10.1029/94JB02985. Direct Link: AbstractPDF(1666K)ReferencesWeb of Science® Times Cited: 249 Lister, J. R., and R. C. Kerr (1991), Fluid-mechanical models of crack propagation and their application to magma-transport in dykes, J. Geophys. Res., 96, 10,049–10,077. Direct Link: AbstractPDF(3338K)ReferencesWeb of Science® Times Cited: 350 Mader, H. M., E. W. Llewellin, and S. P. Mueller (2013), The rheology of two-phase magmas: A review and analysis, J. Volcanol. Geotherm. Res., 257, 135–158. CrossRef,CAS,Web of Science®,ADS Marsh, B. D. (1988), On the interpretation of crystal size distributions in magmatic systems, J. Petrol., 39, 553–559. CrossRef McBirney, A. R., and T. Murase, (1984), Rheological properties of magmas, Ann. Rev. Earth Planet. Sci., 12, 337–357. CrossRef,Web of Science® Times Cited: 217,ADS Mezger, G. T. (2006), The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 290 pp., Vincentz Network GmbH & Co KG, Hannover, Germany. Michaud, V. M. (1995), Crustal xenoliths in recent hawaiites from Mount Etna, Italy: Evidence for alkali exchanges during magma-wall rock interaction, Chem. Geol., 122, 21–42. CrossRef,CAS,Web of Science® Times Cited: 21 Mueller, S., E. Llewellin, and H. M. Mader (2010), The rheology of suspensions of solid particles, Proc. R. Soc. A, 466, 1201–1228, doi:10.1098/rspa.2009.0445. CrossRef,CAS,Web of Science® Times Cited: 53,ADS Petford, N. (2009), Which effective viscosity?, Mineral. Mag., 73, 167–191, doi:10.1180/minmag.2009.073.2.167. CrossRef,CAS,Web of Science® Times Cited: 21 Pishvaei, M., P. Cassagnau, and T. F. McKenna (2006), Modelling of the rheological properties of bimodal emulsions, Macromol. Symp., 243, 63–71, doi:10.1002/masy.20065 1107. Direct Link: AbstractPDF(313K)ReferencesWeb of Science® Times Cited: 2 Qi, F., and R. I. Tanner (2012), Random close packing and relative viscosity of multimodal suspensions, Rheol. Acta, 51, 289–302, doi:10.1007/s00397-011-0597-3. CrossRef,CAS,Web of Science® Times Cited: 3 Raiskinmäki, P., A. Shakib-Manesh, A. Koponen, A. Jäsberg, M. Kataja, and J. Timonen (2000), Simulations of non-spherical particles suspended in a shear flow, Comput. Phys. Commun., 129, 185–195, doi:10.1016/S0010-4655(00)001 06-5. CrossRef,CAS,Web of Science® Times Cited: 21,ADS Rutgers, I. R. (1962), Relative viscosity and concentration, Rheol. Acta, 2, 305–348, doi:10.1007/BF01976051. CrossRef,CAS Salisbury, M. J., W. A. Bohrson, M. A. Clynne, F. Ramos, and P. Hoskin (2008), Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: Implications for timescales of magma chamber processes associated with the 1915 Eruption of Lassen Peak, CA, J. Petrol., 49, 1755–1780. CrossRef,CAS,Web of Science® Times Cited: 19 Sato, H. (2005), Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano, J. Mineral. Petrol. Sci., 100, 133–142. CrossRef,CAS,Web of Science® Times Cited: 33 Shapiro, A. P., and R. F. Probstein (1992), Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions, Phys. Rev. Lett., 68, 1422–1425. CrossRef,CAS,Web of Science® Times Cited: 80,ADS Soule, S. A., and K. V. Cashman (2005), Shear rate dependence of the pahoehoe to 'a'a transition: Analog experiments, Geology, 33, 361–364. CrossRef,Web of Science® Times Cited: 16,ADS Taddeucci, J., and D. M. Palladino (2002), Particle size-density relationships in pyroclastic deposits: Inferences for emplacement processes, Bull. Volcanol., 64, 273–284, doi:10.1007/s00445-002-0205-6. CrossRef,Web of Science® Times Cited: 15,ADS Thies, M., and J. Deubener (2002), Onset of non-Newtonian flow of foamed soda-lime-silica glasses, Proc. XIX Int. Congr. Glass Edinburgh 1–6 July 2001, Glass Technol., 43C, 43–45. Thomas, D. (1965), Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci., 20, 267–277, doi:10.1016/0095-8522(65)90016-4. CrossRef,CAS,Web of Science® Times Cited: 660 Vetere, F., H. Behrens, F. Holtz, G. Vilardo, and G. Ventura (2010), Viscosity of crystal-bearing melts and its implication for magma ascent, J. Mineral. Petrol. Sci., 105, 151–163, doi:10.2465/jmps.090402. CrossRef,CAS,Web of Science® Times Cited: 5 Vona, A., C. Romano, D. B. Dingwell, and D. Giordano (2011), The rheology of crystal-bearing basaltic magmas from Stromboli and Etna, Geochim. Cosmochim. Acta, 75, 3214–3236, doi:10.1016/j.gca.2011.03.031. CrossRef,CAS,Web of Science® Times Cited: 17,ADS Zhou, Z., M. J. Solomon, P. J. Scales, and D. V. Boger (1999), The yield stress of concentrated flocculated suspensions of size distributed particles, J. Rheol., 43, 651–671, doi:10.1122/1.551029. CrossRef,CAS,Web of Science® Times Cited: 54,ADSen
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.eissn1525-2027en
dc.contributor.authorDel Gaudio, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations

8
checked on Feb 10, 2021

Page view(s)

194
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric