Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9318
DC FieldValueLanguage
dc.contributor.authorallVilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallSansivero, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2015-02-11T13:16:50Zen
dc.date.available2015-02-11T13:16:50Zen
dc.date.issued2015-02-07en
dc.identifier.urihttp://hdl.handle.net/2122/9318en
dc.description.abstractDifferent procedures were used to analyze a comprehensive time series of nighttime thermal infrared images acquired from October 2006 to June 2013 by a permanent station at Pisciarelli (Campi Flegrei, Italy). The methodologies were aimed at the detection and quantification of possible spatiotemporal changes in the ground-surface thermal features of an area affected by diffuse degassing. Long-term infrared time series images were processed without taking into account atmospheric conditions and emissivity estimations. The data obtained were compared with the trends of independent geophysical and geochemical parameters, which suggested that long-term temporal variations of the surface maximum temperatures were governed by the dynamics of the deeper hydrothermal system. Analogously, the dynamics of the shallow hydrothermal system are likely to control the short-period thermal oscillations that overlie the long-term thermal signals. The map of the yearly rates of temperature change shows temperature increases clustered in the thermal anomalous area of the infrared images, without evidence of modifications to the extension of the anomaly or of growth of new areas with significant thermal emission. This suggests that in the present state, the heat transfer is mainly due to hot gas emission through preexisting fractures and vents. Our data indicate that the comprehensive picture of the spatiotemporal evolution of the thermal features of the hydrothermal sites obtained by long-term infrared monitoring can provide useful information toward refining physical and conceptual models, as well as improving surveillance of active volcanoes.en
dc.description.sponsorshipThe TIR monitoring system was partially funded by the 2000–2006 National Operating Programme and by the Italian Civil Protection Department in the framework of the 2004–2006 agreement with the Istituto Nazionale di Geofisica e Vulcanologia.en
dc.language.isoEnglishen
dc.publisher.nameWileyen
dc.relation.ispartofJournal of Geophysical Research: Solid Earthen
dc.relation.ispartofseries2/120 (2015)en
dc.subjectThermal Infrared Monitoringen
dc.subjectCampi Flegreien
dc.titleLong-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber812–826en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/2014JB011497/abstracten
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1002/2014JB011497en
dc.relation.referencesAmoruso, A., L. Crescentini, I. Sabbetta, P. De Martino, F. Obrizzo, and U. Tammaro (2014), Clues to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data, Geophys. Res. Lett., 41, 3081–3088, doi:10.1002/2014GL059539. Ball, M., and H. Pinkerton (2006), Factors affecting the accuracy of thermal imaging cameras in volcanology, J. Geophys. Res., 111, B11203, doi:10.1029/2005JB003829. Caliro, S., G. Chiodini, D. Galluzzo, D. Granieri, M. La Rocca, G. Saccorotti, and G. Ventura (2005), Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data, Bull. Volcanol., 67, 358–369, doi:10.1007/s00445-004-0381-7.Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura (2001), CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy, J. Geophys. Res., 106(B8), 16,213–16,221, doi:10.1029/2001JB000246. Chiodini, G., D. Granieri, R. Avino, S. Caliro, and A. Costa (2005), Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems, J. Geophys. Res., 110, B08204, doi:10.1029/2004JB003542. Chiodini, G., G. Vilardo, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2007), Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy), J. Geophys. Res., 112, B12206, doi:10.1029/2007JB005140. Chiodini, G., S. Caliro, C. Cardellini, D. Granieri, R. Avino, A. Baldini, M. Donnini, and C. Minopoli (2010), Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity, J. Geophys. Res., 115, B03205, doi:10.1029/ 2008JB006258. Chiodini, G., R. Avino, S. Caliro, and C. Minopoli (2011), Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei), Ann. Geophys., 54, 2, doi:10.4401/ag-5002. Chiodini, G., S. Caliro, P. De Martino, R. Avino, and F. Gherardi (2012), Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations, Geology, 40, 943–946, doi:10.1130/G33251.1. Cook, R. D., and S. Weisberg (1982), Residuals and Influence in Regression, Chapman and Hall, New York. D’Auria, L., F. Giudicepietro, I. Aquino, G. Borriello, C. Del Gaudio, D. Lo Bascio, M. Martini, G. P. Ricciardi, P. Ricciolino, and C. Ricco (2011), Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010), J. Geophys. Res., 116, B04313, doi:10.1029/2010JB007837. De Martino, P., U. Tammaro, and F. Obrizzo (2014), GPS time series at Campi Flegrei caldera (2000–2013), Ann. Geophys., 57(2), S0213, doi:10.4401/ag-643. Del Gaudio, C., I. Aquino, G. P. Ricciardi, C. Ricco, and R. Scandone (2010), Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009, J. Volcanol. Geoth. Res., 195, 48–56, doi:10.1016/j.jvolgeores.2010.05.014. Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246. Diliberto, I. S. (2013), Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, Italy), J. Volcanol. Geotherm. Res., 264, 150–163, doi:10.1016/j.jvolgeores.2013.08.003. Gaudin, D., F. Beauducel, P. Allemand, C. Delacourt, and A. Finizola (2013), Heat fluxmeasurement from thermal infrared imagery in low-flux fumarolic zones: Example of the Ty fault (La Soufrière de Guadeloupe), J. Volcanol. Geotherm. Res., 267, 47–56, doi:10.1016/j.jvolgeores.2013.09.009. Gottsmann, J., and J. Marti (2008), Caldera volcanism: Analysis, modeling and response, Dev. Volcanol., 10. Guidoboni, E., and C. Ciuccarelli (2010), The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 A.D.), Bull. Volcanol., 73(6), 655–677, doi:10.1007/s00445-010-0430-3. Guizar-Sicairos, M., S. T. Thurman, and J. R. Fienup (2008), Efficient subpixel image registration algorithms, Opt. Lett., 33, 156–158. Harris, A. J. L. (2013), Thermal Remote Sensing of Active Volcanoes: A User’s Manual, Cambridge Univ. Press, Cambridge, U. K. Harris, A. J. L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the volcano fumarole field, Bull. Volcanol., 71, 441–458, doi:10.1007/s00445-008-0236-8. Hurwitz, S., R. N. Harris, C. A. Werner, and F. Murphy (2012), Heat flow in vapor-dominated areas of the Yellowstone Plateau volcanic field: Implications for the thermal budget of the Yellowstone caldera, J. Geophys. Res., 117, B10207, doi:10.1029/2012JB009463. Hutchison, W., N. Varley, D. M. Pyle, T. A. Mather, and J. A. Stevenson (2013), Airborne thermal remote sensing of the Volcán de Colima (Mexico) lava dome from 2007 to 2010, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather, and J. Biggs, Geol. Soc. London. Spec. Publ., 380, 203–228. Isaia, R., P. Marianelli, and A. Sbrana (2009), Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303, doi:10.1029/2009GL040513. Lagios, E., S. Vassilopoulou, V. Sakkas, V. Dietrich, B. N. Damiata, and A. Ganas (2007), Testing satellite and ground thermal imaging of low-temperature fumarolic fields: The dormant Nisyros Volcano (Greece), ISPRS J. Photogramm. Remote Sens., 62, 447–460, doi:10.1016/isprsjprs.2007.07.003. Lodato, L., L. Spampinato, A. J. L. Harris, J. Dehn, M. R. James, E. Pecora, E. Biale, and A. Curcuruto (2008), Use of forward looking infrared thermal cameras at active volcanoes, in Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes, edited by W. Marzocchi and A. Zollo, pp. 427–434, INGV, Italy. Lowenstern, J. B., R. B. Smith, and D. P. Hill (2006), Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems, Philos. Trans. R. Soc. A., 364, 2055–2072. Matsushima, N., K. Kazahaya, G. Saito, and H. Shinohara (2003), Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999, J. Volcanol. Geotherm. Res., 126, 285–301, doi:10.1016/S0377-0273(03) 00152-5. Minet, C., et al. (2012), High resolution monitoring of Campi Flegrei (Naples, Italy) by exploiting TerraSAR-X data: An application to Solfatara crater, Proceedings of the “Fringe 2011” ESA Workshop. Newhall, C. G., and D. Dzurisin (1988), Historical unrest at large calderas of the world, U.S. Geol. Surv. Bull., 1855, 1108. Nowotarski, J., J. Tomczyk, and R. Weron (2013), Robust estimation and forecasting of the long-term seasonal component of electricity spot prices, Energ. Econ., 39, 13–27, doi:10.1016/j.eneco.2013.04.004. Orsi, G., L. Civetta, C. Del Gaudio, S. de Vita, M. A. Di Vito, R. Isaia, S. Petrazzuoli, G. P. Ricciardi, and C. Ricco (1999), Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block resurgence in a densely populated area, J. Volcanol. Geotherm. Res., 91, 415–451. Orsi, G., M. A. Di Vito, and R. Isaia (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530. Pantaleo, M., and T. R. Walter (2014), The ring-shaped thermal field of Stefanos crater, Nisyros Island: A conceptual model, Solid Earth, 5, 183–198, doi:10.5194/se-5-183-2014. Petrosino, S., N. Damiano, P. Cusano, M. A. Di Vito, S. deVita, and E. Del Pezzo (2012), Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis, Geochem. Geophys. Geosyst., 13, Q07006, doi:10.1029/2011GC004030. Ramsey, M. S., and A. J. L. Harris (2013), Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?, J. Volcanol. Geotherm. Res., 249, 217–233, doi:10.1016/j.jvolgeores.2012.05.011. Saccorotti, G., S. Petrosino, F. Bianco, M. Castellano, D. Galluzzo, M. La Rocca, E. Del Pezzo, L. Zaccarelli, and P. Cusano (2007), Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei caldera, Italy, Phys. Earth Planet. Inter., 165, 14–24, doi:10.1016/j.pepi.2007.07.006.Sansivero, F., G. Scarpato, and G. Vilardo (2013), The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater, Ann. Geophys., 56, S0454, doi:10.4401/ag-6460. Sawyer, G. M., andM. R. Burton(2006), Effects of a volcanicplumeon thermal imagingdata, Geophys. Res. Lett., 33, L14311, doi:10.1029/2005GL025320. Spampinato, L., S. Calvari, C. Oppenheimer, and E. Boschi (2011), Volcano surveillance using infrared cameras, Earth Sci. Rev., 106, 63–91, doi:10.1016/j.earscirev.2011.01.003. Spampinato, L., C. Oppenheimer, A. Cannata, P. Montalto, G. Salerno, and S. Calvari (2012), On the time-scale of thermal cycles associated with open-vent degassing, Bull. Volcanol., 74, 1281–1292, doi:10.1007/s00445-012-0592-2. Stevenson, J. A., and N. Varley (2008), Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007, J. Volcanol. Geotherm. Res., 177, 911–924, doi:10.1016/j.jvolgeores.2008.07.003. Tank, V., H. Pfanz, and H. Kick (2008), New remote sensing techniques for the detection and quantification of Earth surface CO2 degassing, J. Volcanol. Geotherm. Res., 177, 515–524, doi:10.1016/j.jvolgeores.2008.06.034. Troiano, A., M. G. Di Giuseppe, Z. Petrillo, C. Troise, and G. De Natale (2011), Ground deformation at calderas driven by fluid injection: Modelling unrest episodes at Campi Flegrei (Italy), Geophys. J. Int., 187, 833–847, doi:10.1111/j.1365-246X.2011.05149.x. Troise, C., G. De Natale, and C. R. J. Kilburn (2006), Mechanisms of Activity and Unrest at Large Calderas, Geol. Soc. London. Spec. Publ., 269, 1–24. Troise, C., G. De Natale, F. Pingue, F. Obrizzo, P. De Martino, U. Tammaro, and E. Boschi (2007), Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast, Geophys. Res. Lett., 34, L03301, doi:10.1029/2006GL028545. Vilardo, G., G. Chiodini, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2008), The permanent thermal infrared network for the monitoring of hydrothermal activity at the Solfatara and Vesuvius volcanoes, in Conception, Verification and Application of Innovative Techniques To Study Active Volcanoes, edited by W. Marzocchi and A. Zollo, pp. 481-495, INGV, Italy. Vilardo, G., R. Isaia, G. Ventura, P. De Martino, and C. Terranova (2010), InSAR Permanent Scatterer analysis reveals fault reactivation during inflation and deflation episodes at Campi Flegrei caldera, Remote Sens. Environ., 114, 2373–2383, doi:10.1016/j.rse.2010.05.014. Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4(7), 1061, doi:10.1029/2002GC000473. Weron, R. (2013), DESEASONALIZE: MATLAB function to remove short and long term seasonal components (new implementation), HSC Software M013004, Hugo Steinhaus Center, Wroclaw Univ. of Technology. Zaksek, K., M. Shirzaei, and M. Hort (2013), Constraining the uncertainties of volcano thermal anomaly monitoring using a Kalman filter technique, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather, and J. Biggs, Geol. Soc. London Spec. Publ., 380, 138–160.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.eissn2169-9356en
dc.contributor.authorVilardo, G.en
dc.contributor.authorSansivero, F.en
dc.contributor.authorChiodini, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.orcid0000-0002-9146-4243-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2015_JGR_JB011497.pdfMain Text9.28 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 50

374
checked on Apr 24, 2024

Download(s)

40
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric