Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9194
DC FieldValueLanguage
dc.contributor.authorallVita, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallKern, C.; U.S. Geological Survey, Cascades Volcano Observatory, 1300 SE Cardinal Ct S100, Vancouver, Washington 98683, USAen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2014-12-29T15:05:36Zen
dc.date.available2014-12-29T15:05:36Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/9194en
dc.description.abstractActive long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and powerinefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 1018 molec cm􀀀2 ( 500 ppmm) were detected along open paths of up to 400m in total length. The instrument’s SO2 detection limit was determined to be 2 1016 molec cm􀀀2 ( 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2/ were both below the instrument’s detection limits during the experiment, the upper limits for the X/ SO2 ratio (XDClO, CS2/ could be derived, and yielded 2 10􀀀3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publicationsen
dc.relation.ispartofJournal of sensors and sensor systemsen
dc.relation.ispartofseries/3(2014)en
dc.subjectLP-DOASen
dc.subjectvolcanic gas measurementsen
dc.subjectVulcano Islanden
dc.subjectsulfur dioxideen
dc.titleDevelopment of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber355-367en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effectsen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.5194/jsss-3-355-2014en
dc.relation.referencesAiuppa, A., Federicao, C., Giudice, G., and Gurrieri, S.: Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy), Geophys. Res. Lett., 32, L13309, doi:10.1029/2005GL023207, 2005. Aiuppa, A., Federico, C., Giudice, G., Gurrieri, S., and Valenza, M.: Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: Evidence from La Fossa Crater fumarolic field, Vulcano Island, Geophys. Res. Lett., 33, L21315, doi:10.1029/2006GL027730, 2006. Aiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., Papale, P., Shinohara, H., and Valenza, M.: Forecasting Etna eruptions by real-time observation of volcanic gas composition, Geology, 35, 1115, doi:10.1130/G24149A.1, 2007. Allard, P., Burton, M., and Muré, F.: Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas, Nature, 433, 407–410, doi:10.1038/nature03246, 2005. Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurementsof molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230—2380 nm region, J. Photoch. Photobio. A, 157, 167–184, 2003. Burton, M. R., Oppenheimer, C. M., Horrocks, L. A., and Francis, P. W.: Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua, Geology, 28, 915–918, 2000. Burton, M. R., Sawyer, G. M., and Granieri, D.: Deep Carbon Emissions from Volcanoes, Rev. Mineral. Geochem., 75, 323–354, doi:10.2138/rmg.2013.75.11, 2013. Burton, M., Allard, P., Muré, F., and La Spina, A.: Magmatic gas composition reveals the source depth of slugdriven strombolian explosive activity., Science, 80, 227–230, doi:10.1126/science.1141900, 2007. Carapezza, M. L., Barberi, F., Ranaldi, M., Ricci, T., Tarchini, L., Barrancos, J., Fischer, C., Perez, N., Weber, K., Di Piazza, A., and Gattuso, A.: Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy), J. Volcanol. Geoth. Res., 207, 130–144, doi:10.1016/j.jvolgeores.2011.06.010, 2011. Carn, S. A., Krotkov, N. A., Yang, K., and Krueger, A. J.: Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI), in: Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observations and Modelling, edited by: Pyle, D. M., Mather, T. A., and Biggs, J., Geological Society, London, 2013. Chan, K. L., Pöhler, D., Kuhlmann, G., Hartl, A., Platt, U., and Wenig, M. O.: NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy, Atmos. Meas. Tech., 5, 901–912, doi:10.5194/amt-5-901-2012, 2012. Duffell, H. J., Oppenheimer, C., Pyle, D. M., Galle, B., McGonigle, A. J., and Burton, M. R.: Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua, J. Volcanol. Geoth. Res., 126, 327–339, doi:10.1016/S0377- 0273(03)00156-2, 2003. Galle, B., Johansson, M., Rivera, C., Zhang, Y., Kihlman, M., Kern, C., Lehmann, T., Platt, U., Arellano, S., and Hidalgo, S.: Network for Observation of Volcanic and Atmospheric Change (NOVAC)A global network for volcanic gas monitoring: Network layout and instrument description, J. Geophys. Res., 115, D05304, doi:10.1029/2009JD011823, 2010. Gerlach, T. M., Delgado, H., Mcgee, K. A., Doukas, M. P., Venegas, J. J., and Cardenas, L.: Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcan Popocatepetl, Mexico, 7 and 10 June, 1995, J. Geophys. Res., 102, 8005–8019, 1997. Gerlach, T. M., Mcgee, K. A., Sutton, A. J., and Elias, T.: Rates of volcanic CO2 degassing from airborne determinations of SO2 emission rates and plume CO2/SO2: Test study at Pu‘u ‘O‘o Cone, Kilauea volcano, Hawaii, Geophys. Res. Lett., 25, 2675– 2678, 1998. Giggenbach, W. F. and Goguel, R. L.: Methods for collection and analysis of geothermal and volcanic water and gas samples, Dep. Sci. Ind. Res. Chem. Div., Report 240, 1989. Grainger, J. F. and Ring, J.: Anomalous Fraunhofer Line Profiles, Nature, 193, 762 pp., 1962. Halmer, M. M., Schmincke, H.-U., and Graf, H.-F., The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, J. Volcanol. Geoth. Res., 115, 511–528, doi:10.1016/S0377-0273(01)00318- 3, 2002. Kern, C., Trick, S., Rippel, B., and Platt, U.: Applicability of lightemitting diodes as light sources for active differential optical absorption spectroscopy measurements, Appl. Optics, 45, 2077– 2088, 2006. Kern, C., Sihler, H., Vogel, L., Rivera, C., Herrera, M., and Platt, U.: Halogen oxide measurements at Masaya Volcano, Nicaragua using active long path differential optical absorption spectroscopy, B. Volcanol., 71, 659–670, doi:10.1007/s00445- 008-0252-8, 2008. Kern, C., Deutschmann, T., Vogel, L., Wöhrbach, M., Wagner, T., and Platt, U.: Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions, B. Volcanol., 72, 233–247, doi:10.1007/s00445-009-0313-7, 2009. Lee, C., Kim, Y. J., Tanimoto, H., Bobrowski, N., Platt, U., Mori, T., Yamamoto, K., and Hong, C. S.: High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan, Geophys. Res. Lett., 32, 10–13, doi:10.1029/2005GL023785, 2005. Merten, A., Tschritter, J., and Platt, U.: Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics, Appl. Optics, 50, 738–54, 2011. O’Dwyer, M.: Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy, Geophys. Res. Lett., 30, 12– 15, doi:10.1029/2003GL017246, 2003. Ohba, T., Daita, Y., Sawa, T., Taira, N., and Kakuage, Y.: Coseismic changes in the chemical composition of volcanic gases from the Owakudani geothermal area on Hakone volcano, Japan, B. Volcanol., 73, 457–469, doi:10.1007/s00445-010-0445-9, 2011. Oppenheimer, C., Francis, P., Burton, M., Maciejewski, A. J. H., and Boardman, L.: Remote measurement of volcanic gases by Fourier transform infrared spectroscopy, Appl. Phys. B, 67, 505– 515, 1998. Oppenheimer, C., Scaillet, B., and Martin, R. S.: Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts, Rev. Mineral. Geochem., 73, 363–421, doi:10.2138/rmg.2011.73.13, 2011. Pedone, M., Aiuppa, A., Giudice, G., Grassa, F., Cardellini, C., Chiodini, G., and Valenza, M.: Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy, B. Volcanol., 76, 812, doi:10.1007/s00445-014-0812-z, 2014. Pering, T. D., Tamburello, G., McGonigle, A. J. S., Aiuppa, A., Cannata, A., Giudice, G., and Patanè, D.: High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna, J. Volcanol. Geoth. Res., 270, 115–121, doi:10.1016/j.jvolgeores.2013.11.014, 2014. Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy, Springer, Berlin, Heidelberg, 2008. Platt, U., Perner, D., and Patz, H. W.: Simultaneous Measurement of Atmospheric CH2O, 03, and NO2 by Differential Optical Absorption, J. Geophys. Res., 84, 6329–6335, 1979. Rasmussen, R. A., Khalil, M. A., Dalluge, R. W., Penkett, S. A., and Jones, B.: Carbonyl sulfide and carbon disulfide from the eruptions of mount st. Helens., Science, 215, 665–667, doi:10.1126/science.215.4533.665, 1982. Rawlins, W. T., Hensley, J. M., Sonnenfroh, D. M., Oakes, D. B., and Allen, M. G.: Quantum cascade laser sensor for SO2 and SO3 for application to combustor exhaust streams, Appl. Optics, 44, 6635–6643, 2005. Richter, D., Erdelyi, M., Curl, R. F., Tittel, F. K., Oppenheimer, C., Duffell, H. J., and Burton, M.: Field measurements of volcanic gases using tunable diode laser based mid-infrared and Fourier transform infrared spectrometers, Opt. Laser Eng., 37, 171–186, doi:10.1016/S0143-8166(01)00094-X, 2002. Roberts, T. J., Braban, C. F., Oppenheimer, C., Martin, R. S., Freshwater, R. A., Dawson, D. H., Griffiths, P. T., Cox, R. A., Saffell, J. R., and Jones, R. L.: Electrochemical sensing of volcanic gases, Chem. Geol., 332–333, 74–91, doi:10.1016/j.chemgeo.2012.08.027, 2012. Roberts, T. J., Saffell, J. R., Oppenheimer, C., and Lurton, T.: Electrochemical sensors applied to pollution monitoring: Measurement error and gas ratio bias — A volcano plume case study, J. Volcanol. Geoth. Res., 281, 85–96, doi:10.1016/j.jvolgeores.2014.02.023, 2014. Schiff, H. I., Mackay, G. I., and Bechara, J.: The use of tunable diode laser absorption spectroscopy for atmospheric measurements, in: Air Monitoring by Spectroscopic Techniques, edited: by M.W. Sigrist, 239–333, JohnWiley and Sons, Inc., New York, Chister, Brisbane, Toronto, Singapore, 1994. Sensor Electronic Technology, I., UVTOP Deep UV LED Technical Catalogue, 1–40, 2014. Shinohara, H.: A new technique to estimate volcanic gas composition: plume measurements with a portable multisensor system, J. Volcanol. Geoth. Res., 143, 319–333, doi:10.1016/j.jvolgeores.2004.12.004, 2005. Shinohara, H., Aiuppa, A., Giudice, G., Gurrieri, S., and Liuzzo, M.: Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy, J. Geophys. Res., 113, B09203, doi:10.1029/2007JB005185, 2008.Shinohara, H., Matsushima, N., Kazahaya, K., and Ohwada, M.: Magma-hydrothermal system interaction inferred from volcanic gas measurements obtained during 2003–2008 at Meakandake volcano, Hokkaido, Japan, B. Volcanol., 73, 409–421, doi:10.1007/s00445-011-0463-2, 2011. Sihler, H., Kern, C., Pöhler, D., and Platt, U.: Applying lightemitting diodes with narrowband emission features in differential spectroscopy., Opt. Lett., 34, 3716–3718, 2009. Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., and Rose, W. I.: Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala, Geol. Soc. Am. Bull., 82, 2299–2302, 1971. Stremme,W., Krueger, A., Harig, R., and Grutter, M.: Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios, Atmos. Meas. Tech., 5, 275–288, doi:10.5194/amt-5-275-2012, 2012. Symonds, R. B., Gerlach, T. M., and Reed, M. H.: Magmatic gas scrubbing: implications for volcano monitoring, J. Volcanol. Geoth. Res., 108, 303–341, doi:10.1016/S0377-0273(00)00292- 4, 2001. Tittel, F. K., Lewicki, R., Lascola, R., and McWhorter, S.: Emerging Infrared Laser Absorption Spectroscopic Techniques for Gas Analysis, in: Trace Analysis of Specialty and Electronic Gases, edited by: Geiger,W. M. and Raynor, M.W., 71–110, JohnWiley and Sons, Inc., New York, Chister, Brisbane, Toronto, Singapore, 2012. Vandaele, A. C., Hermans, C., and Fally, S.: Fourier transform measurements of SO2 absorption cross sections: II. Temperature dependence in the 29000-44000 cm􀀀1 (345–420 nm) region, J. Quant. Spectrosc. Ra., 110, 2115–2126, 2009. Vita, F., Inguaggiato, S., Bobrowski, N., Calderone, L., Galle, B., and Parello, F.: Continuous SO2 flux measurements for Vulcano Island, Italy, Ann. Geophys., 55, 301–308, doi:10.4401/ag-5759, 2012. Wahner, A., Ravishankara, A. R., Sander, S. P., and Friedl, R. R.: Absorption cross section of BrO between 312 and 385 nm at 298 and 223 K, Chem. Phys. Lett., 152, 507–512, 1988. Werner, C., Evans, W. C., Kelly, P. J., McGimsey, R., Pfeffer, M., Doukas, M., and Neal, C.: Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano, Alaska, Geochem. Geophy. Geosyst., 13, Q03015, doi:10.1029/2011GC003794, 2012. Werner, C., Kelly, P. J., Doukas, M., Lopez, T., Pfeffer, M., McGimsey, R., and Neal, C.: Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 259, 270–284, doi:10.1016/j.jvolgeores.2012.04.012, 2013. Yu, Y., Geyer, A., Xie, P., Galle, B., Chen, L., and Platt, U.: Observations of carbon disulfide by differential optical absorption spectroscopy in Shanghai, Geophys. Res. Lett., 31, L11107, doi:10.1029/2004GL019543, 2004.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.obiettivoSpecifico4V. Vulcani e ambienteen
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorVita, F.en
dc.contributor.authorKern, C.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentU.S. Geological Survey, Cascades Volcano Observatory, 1300 SE Cardinal Ct S100, Vancouver, Washington 98683, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptU.S. Geological Survey, Cascades Volcano Observatory, 1300 SE Cardinal Ct S100, Vancouver, Washington 98683, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Vita F. et al J Sens Sens Syst_2014.pdfMain article3.63 MBAdobe PDFView/Open
Show simple item record

Page view(s) 10

434
checked on Apr 24, 2024

Download(s) 50

190
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric