Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9021
DC FieldValueLanguage
dc.contributor.authorallAlparone, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBonaccorso, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCurrenti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2014-06-13T12:05:50Zen
dc.date.available2014-06-13T12:05:50Zen
dc.date.issued2013-09en
dc.identifier.urihttp://hdl.handle.net/2122/9021en
dc.description.abstractWe investigated the evolution of seismicity and deformation in the unstable eastern flank of Etna volcano over a 30 year period (from 1980 to 2012). A significant temporal correlation has been revealed between periods of flank acceleration and intensified seismic activity by comparing seismicity along the northern border (Pernicana fault system) of the sliding flank and the deformation of the eastern flank. Two marked phases have been observed in 1984-1986 and in the years following 2002. These two phases are separated by an intermediate phase from 1987 to 2001, in which the flank sliding slowed down and the seismicity dropped drastically. This common temporal evolution in the deformation rate and seismic release supports the hypothesis that the seismicity in the northern border can be viewed as a marker of the response to accommodate the stress exerted by the traction of the eastern flank sliding. This interplay has also been corroborated by finite element method numerical computations that highlight a good correlation between the seismicity pattern and areas of positive stress changes induced by the sliding surface. The two intense phases of flank acceleration are representative of two main different sources: volcano flank instability stretching the eastern sector in the first 1984-1986 phase and magmatic intrusions pushing the eastern flank seaward since the 2002-2003 eruption. Establishing the relationship between flank acceleration and seismic activation therefore contributes to understanding Etna's mechanical behavior and provides insights into the processes regulating the unstable flank response.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/118(2013)en
dc.subjectPernicanaen
dc.subjectfaulten
dc.subjectvolcano-tectonicsen
dc.subjectflank instabilityen
dc.subjectseismicity and deformationen
dc.subjectstress and strainen
dc.titleLong-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber5098-5108en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1002/jgrb.50364en
dc.relation.referencesAagaard, B., S. Kientz, M. Knepley, S. Somala, L. Strand, and C. Williams (2010), PyLith User Manual, Version 1.5.0, 224 p., Pasadena, CA: Computational Infrastructure of Geodynamics. URL: geodynamics.org/cig/software/short/pylith/pylith_manual-1.5.pdfAcocella, V., G. Puglisi, and F. Amelung (2013), Flank instability at Mt. Etna, J. Volcanol. Geoth. Res., v. 251, 1-4 Acocella, V., B. Behncke, M. Neri, and S. D’Amico (2003) Link between major flank slip and eruptions at Mt. Etna (Italy), Geophys. Res. Lett., 30, doi: 10.1029/ 2003GL018642Acocella, V., and M. Neri (2005), Structural features of an active strike–slip fault on thesliding flank of Mt. Etna (Italy). J. Struct. Geol. 27, 343–355. Aloisi, M., A. Bonaccorso, S. Gambino, M. Mattia, and G. Puglisi, Etna 2002 eruption imaged from continuous tilt and GPS data, Geoph.Res.Lett., 30, 23, 2214, 2003Aloisi, M., A. Bonaccorso, F. Cannavò, S. Gambino, M. Mattia, G. Puglisi, and E. Boschi (2009), A new dike intrusion style for the Mount Etna May 2008 eruption modelled through continuous tilt and GPS data, Terra Nova, 21, 4, 316-321 Alparone, S., O. Cocina, S. Gambino, A. Mostaccio, S. Spampinato, T. Tuvè, and A. Ursino (2012), Seismological features of the Pernicana-Provenzana Fault System (Mt. Etna, Italy) and implications for the dynamics of northeastern flank of the volcano. J. Volcanol. Geoth. Res., 245-254, doi:10.1016/j.jvolgeores.2012.03.010 Andronico, D., S. Branca, S. Calvari, M.B. Burton, T. Caltabiano, R.A. Corsaro, P. Del Carlo, G. Garfì, L. Lodato, L. Miraglia, F. Murè, M. Neri, E. Pecora, M. Pompilio, G. Salerno, and L. Spampinato (2005), A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol., 67, 314–330. Apuani, T., C. Corazzato, A. Merri, and A. Tibaldi (2013), Understanding Etna flank instability through numerical models, J. Volcanol. Geoth. Res., v. 251, 112-126. Azzaro, R. (2004). Seismicity and active tectonics in the Etna region: constraints for a seismotectonic model. American Geophysical Union, Geophysical monograph, 143, Mt. Etna: volcano laboratory, A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro and S. Falsaperla (Eds.), 205-220. Azzaro, R., and S. D'Amico (2009), Catalogo terremoti etnei dal 1832 al 2008. http://www.ct.ingv.it/ufs/macro/ Azzaro, R., L. Ferreli, A.L. Michetti, L. Serva and E. Vittori (1998) Environmental hazard of capable faults: the case of the Pernicana fault (Mt. Etna, Sicily), Nat. Hazards, 17, 147-162. Azzaro, R., M. Mattia, and G. Puglisi (2001), Fault creep and kinematics of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic observation and their tectonic significance. Tectonophysics 333, 401–415. Battaglia, M., M. Di Bari, V. Acocella, and M. Neri (2011), Dike emplacement and flank instability at Mount Etna: Constraints from a poro-elastic-model of flank collapse, J. Volcanol. Geotherm. Res., 199, 153–164, doi:10.1016/j.jvolgeores.2010.11.005. Bonaccorso, A., F. Ferrucci, D. Patanè, and L. Villari (1996), Fast deformation processes and eruptive activity at Mt. Etna (Italy), J. Geophys. Res., 101, 17467-17480. Bonaccorso, A., and P.M. Davis (2004), Modeling of ground deformation associated with recent lateral eruptions: Mechanics of magma ascent and intermediate storage at Mt.Etna. Monograph of American Geophysical Union “Etna: Volcano Laboratory” , n.143, 293-306. Bonaccorso, A., A. Bonforte, F. Guglielmino, M. Palano, and G. Puglisi (2006), Composite ground deformation pattern forerunning the 2004-2005 Mount Etna eruption, J. Geophys. Res., 111, B12207, doi: 10.1029/2005jb004206. Bonaccorso, A., A. Bonforte, G. Currenti, C. Del Negro, A. Di Stefano, and F. Greco (2011), Magma storage, eruptive activity and flank instability: Inferences from ground deformation and gravity changes during the 1993–2000 recharging of Mt. Etna volcano. Journal of Volcanology and Geothermal Research 200, 245-254, doi:10.1016/j.jvolgeores.2011.01.001. Bonaccorso, A., G. Currenti, and C. Del Negro (2013), Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: A thirty years study at Mt. Etna volcano, J.Volcanol.Geotherm.Res., 251, 127-136, doi:10.1016/j.jvolgeores.2012.06.002 Bonforte, A., and G. Puglisi (2006), Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network, J. Volcanol. Geotherm. Res., 153, 357– 369, doi:10.1016/j.jvolgeores.2005.12.005. Bonforte, A., S. Branca, and M. Palano (2007a), Geometric and kinematic variations along the active Pernicana fault: implication for the dynamics of Mount Etna NE flank (Italy), J. Volcanol. Geotherm. Res., 160, 210–222, doi:10.1016/j.jvolgeores.2006.08.00. Bonforte, A., S. Gambino, F. Guglielmino, F. Obrizzo, M. Palano, and G. Puglisi (2007b), Ground deformation modeling of flank dynamics prior to the 2002 eruption of Mt. Etna, Bull. Volcanol., 69, 757–768, doi:10.1007/s00445-006-0106-1. Bonforte, A., D. Carbone, F. Greco and M. Palano (2007c), Intrusive mechanism of the 2002 NE-rift eruption at Mt Etna (Italy) modelled using GPS and gravity data, Geophys. J. Intern., 169, 339-347, doi: 10.1111/j.1365-246X.2006.03249.x. Bonforte A., A. Bonaccorso, F. Guglielmino, M. Palano, and G. Puglisi (2008), Feeding system and magma storage beneath Mt. Etna as revealed by recent infation/deflation cycles, Journal Geophys. Res., 113, B05406, doi:10.1029/2007JB005334. Bonforte A., F. Guglielmino, M. Coltelli, A. Ferretti, and G. Puglisi (2011), Structural assessment of Mt. Etna volcano from Permanent Scatterers analysis. Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/2010GC003213. Borgia, A., L. Ferrari, and G. Pasquarè (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature, 357, 231-235. Bousquet, J. C., and G. Lanzafame (2004). The tectonics and geodynamics of Mt. Etna: Synthesis and interpretation of geological and geophysical data, in Etna Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, and S. Falsaperla, pp. 29–47, AGU, Washington, D.C. Branca S., M. Coltelli, E. De Beni, and J. Wijbrans (2008), Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data: International Journal of Earth Sciences, v. 97, p. 135–152, doi: 10.1007/s00531-006-0152-0. Calvari, S., L. H. Tanner, and G. Groppelli (1998), Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy), J. Volcanol. Geotherm. Res., 87, 193–209 Calvari, S., L. H. Tanner, G. Groppelli, and G. Norini (2004), Valle del Bove, eastern flank of Etna volcano: A comprehensive model for the opening of the depression and implications for the future hazards, in Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 65–75, AGU, Washington, D. C.Cianetti, S., C. Giunchi, and E. Casarotti (2012), Volcanic deformation and flank instability due to magmatic sources and frictional rheology: the case of Mount Etna, Geophys. J. Int., 191:939-953, DOI:10.1111/j.1365-246X.2012.05689.x Cocco, M., and J. R. Rice (2002), Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geoph. Res., 107(B2), 2030, doi:10.1029/2000JB000138.Cosentino M., G. Lombardo, G. Patanè, R. Schick, and A. D. L. Sharp (1982), Seismological researches on Mount Etna: state of art and recent trends. Mem. Soc. Geol. It., 23, 159-205. Currenti, G., C. Del Negro, G. Ganci, and C. A. Williams (2008). Static stress changes induced by the magmatic intrusions during the 2002–2003 Etna eruption. J. Geophys. Res., 113, B10206, doi:10.1029/2007JB005301. Currenti, G., A. Bonaccorso, C. Del Negro, F. Guglielmino, D. Scandura, and E. Boschi (2010), FEM-based inversion for heterogeneous fault mechanisms: application at Etna volcano by DInSAR data. Geophys J Iit, 183, 2, 765-773, DOI 10.1111/j.1365-246X.2010.04769.x Currenti, G., G. Solaro, R. Napoli, A. Pepe, A. Bonaccorso, C. Del Negro, and E. Sansosti (2012), Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest, Remote Sensing of Environment, 125, 64-72. Dieterich, J.H., V. Cayol, and P. Okubo (2000), The use of earthquake rate changes as a stress meter at Kilauea volcano. Nature , 408 , 457-460. Distefano, G., S. Gresta, and V. Longo (1990), Caratteri della sismicità del versante nordorientale dell'Etna. Proceedings Annual Meeting Gruppo Nazionale di Geofisica della Terra Solida, pp. 253–260. Elsworth, D., and S. Day (1999), Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J. Volcanol. Geoth. Res. 94(1–4), 323–340. Feuillet, N., M. Cocco, C. Musumeci, and C. Nostro (2006), Stress interaction between seismic and volcanic activity at Mt Etna. Geophys. J. Int., 164, 697–718, doi:10.1111/j.1365-246X.2005.02824.x. Gresta, S., and G. Patanè (1987), Review of seismological studies at Mt. Etna, Pure Appl. Geophys., 125, 951-970. Gresta, S., F. Ghisetti, E. Privitera, and A. Bonanno (2005), Coupling of eruptions and earthquakes at Mt. Etna (Sicily, Italy): a case study from the 1981 and 2001 events. Geophys. Res. Lett., 32, L05306, doi:10.1029/2004GL021479. Gruppo Analisi Dati Sismici (2012), Catalogo dei terremoti della Sicilia Orientale-Calabria Meridionale (1999–2012). INGV, Catania. http://www.ct.ingv.it/ufs/analisti/catalogolist.php. Guglielmino, F., C. Bignami, A. Bonforte, P. Briole, F. Obrizzo, G. Puglisi, S. Stramondo, and U. Wegmuller (2011), Analysis of satellite and in situ ground deformation data integrated by the SISTEM approach: The April 3, 2010 earthquake along the Pernicana fault (Mt. Etna - Italy) case study. Earth Planet. Sci. Lett., 312, 327-336, doi:10.1016/j.epsl.2011.10.028 Gutenberg, R., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Seism. Soc. Am. 34, 185–188. Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991), Seismic heterogeneity of Mt. Etna: Structure and activity. Geophys. J. Int. 105, 139–153. LaGriT, (2011), Los Alamos Grid Toolbox, Los Alamos National Laboratory, <http://lagrit.lanl.gov>. Lahr, J.C. (1989), HYPOELLIPSE/VERSION 2.0*: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern. U.S. Geol. Surv. Open File Rep. 89/116, 81 pp. Lin, J.-Y., Sibuet, J.C., Lee, C.-S., Hsu, S.K., Klingelhoefer, F. (2007) Spatial variations in the frequency-magnitude distribution of earthquakes in the southwestern Okinawa Trough. Earth, Planets and Space, 59 (4), pp. 221-225. McGuire, W. J. (1996), Volcano instability: A review of contemporary themes, in Volcano Instability, Geol. Soc. London Spec. Publ., 110, 1–23, doi: 10.1144/GSL.SP.1996.110.01.01 Pareschi, M.T., E. Boschi, F. Mazzarini, and M. Favalli (2006), Large submarine landslides offshore Mt. Etna, Geophys.Res. Lett., 33, L13302, doi:10.1029/2006GL026064. Patanè, D., O. Cocina, S. Falsaperla, E. Privitera, and S. Spampinato (2004), Mt. Etna Volcano, a seismological framework. In Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Etna Volcano Laboratory. Geophysical monograph series. AGU, 147 – 165. Privitera, E., A. Montalto, G. Neri, D. Patanè, A. Pellegrino, R. Scarpa, S. Spampinato, and O. Torrisi (1990), Il controllo strumentale dell’attività sismica dell’Etna: la rete permanente IIV. Bollettino Gruppo Nazionale per la Vulcanologia, 5, 491-508. Puglisi, G., P. Briole, A. Bonforte (2004), Twelve Years of Ground Deformation Studies on Mt. Etna Volcano Based on GPS Surveys, in “Etna Volcano Laboratory”, Eds. A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro and S. Falsaperla, AGU Geophysical Monograph series, pp. 321-341, ISBN 0-87590-408-4, doi:10.1029/143GM20. Romano, R. (1982), Succession of volcanic activity in the Etnean area. In: Romano R. (ed) Mount Etna Volcano, a Review of Recent Earth Sciences Studies. Memorie della Società Geologica Italiana 23: 27-48. Schorlemmer, D., S. Wiemer, and M. Wyss (2004), Earthquake statistics at Parkfield: 1. Stationarity of b values. Journal of Geophysical Research B: Solid Earth, 109 (12), pp. 1-17. Schütze, T., and H. Schwetlick (1997) Constrained approximation by splines with free knots", BIT Num. Math., 37, 105-137. Schwetlick, H., and T. Schütze (1995) Least squares approximation by splines with free knots, BIT Num. Math., 35, 1-3. Toda, S., R.S. Stein, P.A. Reasenberg, and J.H. Dieterich (1998), Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities, J. Geophys. Res., 103, B10, 24543-24565. Toda, S., and R.S. Stein (2002), Response of the San Andreas Fault to the 1983 Coalinga-Nuñez Earthquakes: An Application of Interaction-based Probabilities for Parkfield, J. Geophys. Res., 107, 10.1029/2001JB000172. Van Wyk de Vries, B., S. Self, F.W. Francis, and L. Kesthelyi (2001), A spreading origin for the Socompa debris Avalanche. Journal of Volcanology and Geothermal Research, 105, 225-247. Voight, B., H. Glicken, R.J. Janda, and P.M. Douglas (1981), Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineux DR (eds) The 1980 eruption of Mount St. Helens. U.S. Geol. Survey Prof. Paper, 1250, 347–377. Voight, B., and D. Elsworth (1997), Failure of volcanic slopes, Geotechnique, 47, 1, 1-31 Walter, T.R., V. Acocella, M. Neri, and F. Amelung (2005), Feedback processes between magmatism and E-flank movement at Mt. Etna (Italy) during the 2002–2003 eruption. J. Geophys. Res. 110, B10205. doi:10.1029/2005JB003688. Wiemer, S., and M. Wiss (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seism. Soc. Am. 90, 859–869. Wiemer, S., and M. Wyss (2002), Mapping spatial variability of the frequency-magnitude distribution of earthquakes. ADV GEOPHYS, 45, 259-302. Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seism. Res. Letts., 72, 373-382.en
dc.description.obiettivoSpecifico1V. Storia e struttura dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorAlparone, S.en
dc.contributor.authorBonaccorso, A.en
dc.contributor.authorBonforte, A.en
dc.contributor.authorCurrenti, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-1161-1512-
crisitem.author.orcid0000-0002-4770-6006-
crisitem.author.orcid0000-0003-0435-7763-
crisitem.author.orcid0000-0001-8650-5613-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Alparone et al_JGR_2013-30y.pdf1.21 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

16
checked on Feb 10, 2021

Page view(s) 50

241
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric