Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8526
DC FieldValueLanguage
dc.contributor.authorallCarafa, M. M. C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2013-02-24T19:54:15Zen
dc.date.available2013-02-24T19:54:15Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8526en
dc.descriptionThis article has been accepted for publication in Geophysical Journal International ©: The Authors 2003. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.en
dc.description.abstractIn this study, we modify and extend a data analysis technique to determine the stress orientations between data clusters by adding an additional constraint governing the probability algorithm. We apply this technique to produce a map of the maximum horizontal compressive stress (S_Hmax) orientations in the greater European region (including Europe, Turkey and Mediterranean Africa). Using the World Stress Map dataset release 2008, we obtain analytical probability distributions of the directional differences as a function of the angular distance, θ. We then multiply the probability distributions that are based on pre-averaged data within θ<3° of the interpolation point and determine the maximum likelihood estimate of the S_Hmax orientation. At a given distance, the probability of obtaining a particular discrepancy decreases exponentially with discrepancy. By exploiting this feature observed in the World Stress Map release 2008 dataset, we increase the robustness of our S_Hmax determinations. For a reliable determination of the most likely S_Hmax orientation, we require that 90% confidence limits be less than ±60° and a minimum of three clusters, which is achieved for 57% of the study area, with small uncertainties of less than ±10° for 7% of the area. When the data density exceeds 0.8×10^-3 data/km2, our method provides a means of reproducing significant local patterns in the stress field. Several mountain ranges in the Mediterranean display 90° changes in the S_Hmax orientation from their crests (which often experience normal faulting) and their foothills (which often experience thrust faulting). This pattern constrains the tectonic stresses to a magnitude similar to that of the topographic stresses.en
dc.description.sponsorshipThis work was supported by the DPC-INGV 2008-2010 S1 project, the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE; Grant agreement no. 226967), and project MIUR-FIRB "Abruzzo" (code: RBAP10ZC8K_003).en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.subjectNeotectonicsen
dc.subjectSeismicity and tectonicsen
dc.subjectFractures and faultsen
dc.subjectIntra-plate processesen
dc.subjectPlate motionsen
dc.subjectDynamics: gravity and tectonicsen
dc.titleThe stress field in Europe: optimal orientations with confidence limitsen
dc.title.alternativeStress in Europe with confidence limitsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://gji.oxfordjournals.org/content/early/2013/02/19/gji.ggt024.abstracten
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.99. General or miscellaneousen
dc.identifier.doi10.1093/gji/ggt024en
dc.relation.referencesAmante, C. & Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009. Andeweg, B., De Vicente, G., Cloetingh, S., Giner, J. & Muñoz Martin, A., 1999. Local stress fields and intraplate deformation of Iberia: variations in spatial and temporal interplay of regional stress sources, Tectonophysics, 305, 153–164 Arnold, R. & Townend, J., 2009. A Bayesian approach to estimating tectonic stress from seismological data. Geophys. J. Int., 170, 1336–1356, doi: 10.1111/j.1365-246X.2007.03485.x Assameur, D.M. & Mareschal, J.-C., 1995. Stress induced by topography and crustal density heterogeneities: implication for the seismicity of southeastern Canada, Tectonophysics, 241 (3–4), 179–192. Bada, G., Horvath, F., Cloetingh, S. & Coblentz, D.D., 2001. Role of topography-induced gravitational stresses in basin inversion: the case study of the Pannonian basin, Tectonics, 20, 343-363. Barba, S., Carafa, M.M.C., Mariucci, M. T., Montone, P. & Pierdominici, S., 2010. Present-day stress field modelling of southern Italy constraining by stress and GPS data, Tectonophysics, 482 (1-4), 193-204. Barba, S., Finocchio, D., Sikdar, E. & Burrato, P., 2013. Modeling the interseismic deformation of a thrust system: seismogenic potential of the Southern Alps, Terra Nova, in press, doi: 10.1111/ter.12026 Basili, R. & Barba, S., 2007. Migration and shortening rates in the Northern Apennines, Italy: implications for seismic hazard, Terra Nova, 19 (6), 462-468. Bennett, R. A., Serpelloni, E., Hreinsdóttir, S., Brandon, M. T., Buble, G., Basic,T., Casale, G., Cavaliere, A., Anzidei, M., Marjonovic, M., Minelli, G., Molli, G. & Montanari, A., 2012. Syn-convergent extension observed using the RETREAT GPS network, northern Apennines, Italy, J. Geophys. Res., 117, B04408, doi:10.1029/2011JB008744. Bird, P. & Li, Y., 1996. Interpolation of principal stress directions by nonparametric statistics: Global maps with confidence limits, J. Geophys. Res., 101(B3), 5,435 – 5,443. Bird, P., 1998. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults, J. Geophys. Res., 103 (B5), 10,115-10,129. Bird, P., Liu, Z. & Rucker, W.K., 2008. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis, J. Geophys. Res., 113, B11406, 1-32. Boncio, P. & Lavecchia, G., 2000. A structural model for active extension in central Italy, Journal of Geodynamics, 29, 233–244. Boncio, P. & Bracone, V., 2009. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures, Tectonophysics, 476 (1-2), 180-194, doi: 10.1016/j.tecto.2008.09.018. Bungum, H., Olesen, O., Pascal, P., Gibbons, S., Lindholm, C., & Vestøl, O., 2010. To what extent is the present day seismicity in Norway driven by post-glacial rebound?, J. Geol. Soc., London, 167, 373–384, doi:10.1144/0016-76492009-009. Caporali, A., Barba, S., Carafa, M.M.C., Devoti, R., Pietrantonio, G. & Riguzzi, F., 2011. Static stress drop as determined from geodetic strain rates and statistical seismicity, J. Geophys. Res., 116, B02410. Carafa, M.M.C. & Barba, S., 2011. Determining rheology from deformation data: The case of central Italy, Tectonics, 30, TC2003. Carminati, E., Doglioni, C. & Barba, S., 2004. Reverse migration of seismicity along thrusts and normal faults, Earth-Sci. Rev., 65 (3-4), 195-222, doi:10.1016/S0012-8252(03)00083-7. Carminati, E., & Vadacca, L., 2010. Two- and three-dimensional numerical simulations of the stress ?eld at the thrust-front of the Northern Apennines, Italy, J. Geophys. Res., 115, B12425. Carminati, E., Scrocca, D. & Doglioni, C., 2010. Compaction-induced stress variations with depth in an active anticline: Northern Apennines, Italy, J. Geophys. Res., 115, B02401. Carminati, E., Toniolo Augier, F. & Barba, S., 2001. Dynamic modeling of stress accumulation in central Italy: Role of structural heterogeneities and rheology, Geophys. J. Int., 144, 373 – 390. Coblentz, D.D. & Richardson, R.M., 1995. Statistical Trends in the Intraplate Stress Field, J. Geophys. Res., 100 (20), 245-255. Decker, K., Meschede, M. & Ring, U., 1993. Fault slip analysis along the northern margin of the Eastern Alps (Mollasse, Helvethic nappes, North- and South-Penninic ?ysch and the Northern Calcareous Alps), Tectonophysics, 223, 291–312. De Vicente, G., Giner, J.L., Munoz Martin, A., Gonzalez-Casado, J.M. & Lindo, R., 1996. Determination of present-day stress tensor and neotectonic interval in the Spanish Central System and Madrid Basin, central Spain, Tectonophysics, 266, 405–424. Geletti, R., Del Ben, A., Busetti, M., Ramella, R. & Volpi V., 2008. Gas seeps linked to salt structures in the Central Adriatic Sea, Basin Res., 20, 473–487. Ghosh, A., Holt, W.E., Wen, L., Haines, A.J. & Flesch, L.M., 2008. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling. Geophysical Research Letters, 35, L16309, 1-5. Grandic, S. & Markulin, Ž., 2000. Triassic synrift euxinic basins as a factor of exploration risk in the Croatian offshore area, Proceedings of International Symposium of Petroleum Geology, April 22–24, 1999, Nafta (Zagreb, Croatia), 51(spec. issue), 41–50. Goes, S., Loohuis, J.J.P., Wortel, M.J.R. & Govers R., 2000. The effect of plate stresses and shallow mantle temperatures on tectonics of northwestern Europe, Global and Planetary Change, 27, 23–39. Gölke, M. & Coblentz, D., 1996. Origins of the European regional stress field, Tectonophysics, 266, 11–24. Ghisetti, F.C. & Sibson, R.H., 2012. Compressional reactivation of E–W inherited normal faults in the area of the 2010–2011 Canterbury earthquake sequence, New Zealand Journal of Geology and Geophysics, 55:3, 177-184. DOI:10.1080/00288306.2012.674048 Giunta, G., Luzio, D., Tondi, E., De Luca, L., Giorgianni, A., D’Anna, G., Renda, P., Cello, G., Nigro, F. & Vitale, M., 2004. The Palermo (Sicily) seismic cluster of September 2002, in the seismotectonic framework of the Tyrrhenian Sea–Sicily border area, Annals of Geophysics, 47 (6), 1755–1770. Hansen, K. M. & Mount, V. S., 1990. Smoothing and extrapolation of crustal stress orientation measurements, J. Geophys. Res., 95(B2), 1155–1165, doi:10.1029/JB095iB02p01155. Hardebeck, J. L. & Michael, A. J., 2006. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence, J. Geophys. Res., 111, B11310, doi:10.1029/2005JB004144. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. & Müller, B., 2008. The World Stress Map database release 2008. Available at http://dx.doi.org/10.1594/GFZ.WSM.Rel2008. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. & Müller, B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482, 3-15. Hergert, T. & Heidbach, O., 2011. Geomechanical model of the Marmara Sea region - II. 3-D contemporary background stress field, Geophys. J. Int., 185 (3),1090-1102. Herraiz, M., De Vicente, G., Lindo, R., Giner, J.L., Simón, J.L., González-Casado, J.M., Vadillo, O., Rodríguez-Pascua, M.A., Cicúendez, J.I., Casas, A., Cabañas, L., Rincón, P., Cortés, A.L., Ramírez, M. & Lucini, M., 2000. The recent (upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Peninsula, Tectonics, 19 (4), 762–786. Herrmann, R.B., Malagnini, L., Munafo, I., 2011. Regional moment tensors of the 2009 L'Aquila earthquake sequence, Bull. Seism. Soc. Am., 101, 975-993. Kastelic, V. & Carafa, M.M.C., 2012. Fault slip rates for the active External Dinarides thrust-and-fold belt, Tectonics, 31, TC3019. Korbar, T., 2009. Orogenic evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates, Earth Sci. Rev., 96 (4), 296–312. Jolivet, L., Faccenna, C. & Piromallo, C., 2009. From mantle to crust: Stretching the Mediterranean, Earth Planet. Sci. Lett., 285, 198–209, doi:10.1016/j.epsl.2009.06.017. Lee, J. C. & Angelier, J., 1994. Paleostress trajectory maps based on the results of local determinations: the ‘‘Lissage’’ program, Comput. Geosci., 20, 161– 191. Liesa, C.L. & Simón, J.L., 2009. Evolution of intraplate stress fields under multiple remote compressions: The case of the Iberian Chain (NE Spain), Tectonophysics, 474 (1-2): 144-159. Lund, B. & Townend, J., 2007. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor, Geophys. J. Int., 170 (3), 1328–1335, doi:10.1111/j.1365-246X.2007.03468.x. Maesano, F. E., Toscani, G., Burrato, P., Mirabella, F., D'Ambrogi, C. & Basili, R., 2013. Deriving thrust fault slip rates from geological modeling: Examples from the Marche coastal and offshore contraction belt, Northern Apennines, Italy, Mar. Petrol. Geol. (in press), doi:10.1016/j.marpetgeo.2012.10.008. Mardia, K.V., 1972. Statistics of Directional Data:Probability and Mathematical Statistics, Academic Press, London. 357 pp. Molnar, P. & England, P., 1990. Temperatures, heat flux, and frictional stress near major thrust faults. Journal of Geophysical Research, 95, B4, 4833-4856. Mount, V.S. & Suppe, J., 1987. State of stress near the San Andreas fault: implications for wrench tectonics, Geology, 15, 1143-1146 Müller, B., Heidbach, O., Negut, M., Sperner, B., & Buchmann, T., 2010. Attached or not attached - evidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania, Tectonophysics, 482 (1-4), 139-149. Müller, B., Wehrle, V., Hettel, S., Sperner, B. & Fuchs, K., 2003. A new method for smoothing orientated data and its application to stress data, in Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs, edited by M. S. Ameen, Geol. Soc. Lond. Spec. Publ., 209, 107 – 126. Müller, B., Wehrle, V., Zeyen, H.J. & Fuchs, K., 1997. Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees, Tectonophysics, 275, 199–219. Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O. & Ljunggren, C., 1992. Regional patterns of tectonic stress in Europe, J. Geophys. Res. 97, 11783–11803. Palano, M., Ferranti, L., Monaco, C., Mattia, M., Aloisi, M., Bruno, V., Cannavò, F. & Siligato, G., 2012. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean, J. Geophys. Res., 117, B07401, doi:10.1029/2012JB009254 Papanikolaou, D., & L. Royden (2007), Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth?,Tectonics, 26, TC5003, doi:10.1029/2006TC002007. Papanikolaou, D., Royden, L. & Vassilakis, E., 2011. Neotectonic and active diverging rates of extension in the northern and southern Hellenides across the central Hellenic shear zone, in: INQUA-IGCP 567 Proceedings Vol.2, Edited by INQUA-TERPRO Focus Area on Paleoseismology and Active Tectonics & IGCP-567 Earthquake Archaeology, Printed in Greece, ISBN 978-960-466-093-3. Pascal, C. & Cloetingh, S.A.P.L., 2009. Gravitational potential stresses and stress field of passive continental margins: Insights from the south Norway shelf, Earth Planet. Sci. Lett., 277, 464-473. Petricca, P., Carafa, M. M. C., Barba, S. & Carminati, E., 2013. Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region, Mar. Petrol. Geol., in press, 10.1016/j.marpetgeo.2012.08.005. Pierdominici, S. & Heidbach, O., 2012. Stress field of Italy - Mean stress orientation at different depths and wave-length of the stress pattern, Tectonophysics, 532-535, 301-311. Rebai, S., Herve, P. & Taboada, A., 1992. Modern tectonic stress field in the Mediterranean region: Evidence for variation in stress directions at different scales, Geophys. J. Int., 110, 106-140. Scrocca, D., 2006. Thrust front segmentation induced by differential slab retreat in the Apennines (Italy), Terra Nova, 18, 154–161. Sgroi, T., de Nardis, R. & Lavecchia, G., 2012. Crustal structure and seismotectonics of central Sicily (southern Italy): new constraints from instrumental seismicity, Geophysical Journal International, 189 (3), 1237–1252. Sibson, R., Ghisetti, F. & Ristau, J., 2011. Stress control of an evolving strike-slip fault system during the 2010–2011 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 82, 824–832. DOI:10.1785/gssrl.82.6.824 Syracuse, E.M., Holt, R.A., Savage, M.K., Johnson, J.H., Thurber, C.H., Unglert, K., Allan, K.N., Karaliyadda, S. & Henderson, M., 2012. Temporal and spatial evolution of hypocentres and anisotropy from the Darfield aftershock sequence: implications for fault geometry and age, New Zealand Journal of Geology and Geophysics, 55:3, 287-293. DOI:10.1080/00288306.2012.690766 Sue, C., Delacou, B., Champagnac, J.D., Allanic, C., Tricart, P. & Burkhard, M., 2007. Extensional neotectonics around the bend of the Western/Central Alps: an overview, Int. J. Earth Sci., 96, 1101-1129. Taymaz, T., Jackson, J. & McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea, Geophys. J. Int., 106, 433-490. Wessel, P. & Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579. Wdowinski, S., Ben-Avraham, Z., Arvidsson, R. & Ekstroem, G., 2006. Seismotectonics of the Cyprian Arc, Geophys. J. Int., 164, 176-181. Whittaker, A., Bott, M.H.P. & Waghorn, G.D., 1992. Stresses and plate boundary forces associated with subduction plate margins. Journal of Geophysical Research, 97, B8, 11,933-11,944. Zang, A., Stephansson, O., Heidbach, O., & Janouschkowetz, S., 2012. World Stress Map Database as a Resource for Rock Mechanics and Rock Engineering, Geotechnical and geological Engineering, 30 (3), 625-646. Zoback, M.D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J.P., Healy, J. H., Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, I. G., Scotti, O. & Wentworth, C., 1987. New evidence on the state of stress of the San Andreas fault system, Science, 238, 1105-1111. Zoback, M.L., 1992. First and second order patterns of stress in the lithosphere: the World Stress Map Project, J. Geophys. Res., 97(B8), 11703-1172.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.obiettivoSpecifico4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorCarafa, M. M. C.en
dc.contributor.authorBarba, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-5463-463X-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Geophys. J. Int.-2013-Carafa-Barba_dowloadable.pdfMain article - downloadable final draft3.25 MBAdobe PDFView/Open
Geophys. J. Int.-2013-Carafa-Barba_publisher_pdf.pdfMain article - publisher pdf (restricted access)9.11 MBAdobe PDFView/Open
readme_supplementary_files.txtSupplementary files - readme1.88 kBTextView/Open
Figure_S1.pdfSupplementary files - Figure S1555.89 kBAdobe PDFView/Open
Table_S1.zipSupplementary files - Table S1 (csv zip)743.69 kBZIPView/Open
Table_S1.csv.gzSupplementary files - Table S1 (csv gz)743.57 kBgzipView/Open
CarafaBarba_ggt024_SupplementaryFiles.zipSupplementary files - Figure S1 and Table S12 MBZIPView/Open
CarafaBarba_ggt024_kmz_GoogleEarth.zipSupplementary files - Google Earth kmz2.51 MBkmz (Google Earth)View/Open
CarafaBarba_ggt024_mapinfo.zipSupplementary files - Mapinfo9.94 MBMapinfoView/Open
CarafaBarba_ggt024_Autocad-DXF.zipSupplementary files - Autocad DXF3.94 MBAutocad DXFView/Open
CarafaBarba_ggt024_mif-mid.zipSupplementary files - Mapinfo (mif mid)4.26 MBMapinfo (mif mid)View/Open
CarafaBarba_ggt024_ESRI-shp.zipSupplementary files - Esri Arcgis8.59 MBSHP (ESRI Arcgis)View/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

28
checked on Feb 10, 2021

Page view(s) 1

1,185
checked on Apr 24, 2024

Download(s) 5

2,177
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric