Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8199
DC FieldValueLanguage
dc.contributor.authorallUgurhan, B.; METU, ANKARA, TURKEYen
dc.contributor.authorallAskan, A.; METU, ANKARA,TURKEYen
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2012-10-15T09:07:12Zen
dc.date.available2012-10-15T09:07:12Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8199en
dc.description.abstractOn 6 April 2009, an earthquake of Mw 6:13 (Herrmann et al., 2011) occurred in central Italy, close to the town of L’Aquila. Although the earthquake is considered to be a moderate-size event, it caused extensive damage to the surrounding area. The earthquake is identified with significant directivity effects: highamplitude, short-duration motions are observed at the stations that are oriented along the rupture direction, whereas low-amplitude, long-duration motions are observed at the stations oriented in the direction opposite to the rupture. The complex nature of the earthquake combined with its damage potential brings the need for studies that assess the seismological characteristics of the 2009 L’Aquila mainshock. In this study, we present the strong-ground-motion simulation of this particular earthquake using a stochastic finite-fault model with a dynamic corner frequency approach. For modeling the resulting ground motions, we choose two finite-fault source models that take into account the source complexity of the L’Aquila mainshock. In order to test the sensitivity of ground-motion parameters to the seismic wave attenuation parameters, we use two different attenuation models obtained in the study region using weak-motion and strong-motion databases. Comparisons are made between the attenuation of synthetics and ground-motion prediction equations (GMPEs). Synthetic ground motions are further compared with the observed ones in terms of Fourier amplitude and response spectra at 21 strong-ground-motion stations that recorded the mainshock within an epicentral distance of 100 km. The spatial distribution of shaking intensity obtained from the “Did You Feel It?” project and site survey results are compared with the spatial distributions of simulated peak ground-motion intensity parameters. Our results show that despite the limitations of the method in simulating the directivity effects, the stochastic finite-fault model seems an effective and fast tool to simulate the high-frequency portion of ground motion.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries4/102(2012)en
dc.subject2009 L'Aquila sequenceen
dc.subjectstrong ground motion simulationsen
dc.titleStrong-Ground-Motion Simulation of the 6 April 2009 L’Aquila, Italy, Earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1429-1445en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1785/0120110060en
dc.relation.referencesAki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217–1231. Akinci, A, F. Galadini, D. Pantosti, M. Petersen, L. Malagnini, and D. Perkins (2009). Effect of time dependence on probabilistic seismichazard maps and deaggregation for the central Apennines, Italy, Bull. Seismol. Soc. Am. 99, 585–610. Akinci, A., L. Malagnini, and F. Sabetta (2010). Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy, Soil Dyn. Earthq. Eng. 30, 320–335. Akinci, A., D. Perkins, A. M. Lombardi, and R. Basili (2010). Uncertainties in the estimation of the probability of occurrence of strong earthquakes from individual seismological sources in the Apennines, Italy, J. Seismol. 14, 95–117. Akkar, S., and J. J. Bommer, (2010). Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East, Seismol. Res. Lett. 81, no. 2, 195–206. Ameri, G., D. Bindi, F. Pacor, and F. Galadini (2011). The 2009 April 6, Mw 6.3, L’Aquila (central Italy) earthquake: Finite-fault effects on intensity data, Geophys. J. Int. 186, 837–851. Ameri, G., M. Massa, D. Bindi, E. D’Alema, A. Gorini, L. Luzi, S. Marzorati, F. Pacor, R. Paolucci, R. Puglia, and C. Smerzini (2009). The 6 April 2009 Mw 6.3 L’Aquila (central Italy) earthquake: Strong-motion observations, Seismol. Res. Lett. 80, 951–966. Anzidei, M., E. Boschi, V. Cannelli, R. Devoti, A. Esposito, A. Galvani, D. Melini, G. Pietrantonio, F. Riguzzi, V. Sepe, and E. Serpelloni (2009). Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data, Geophys. Res. Lett. 36, L17307, doi: 10.1029/2009GL039145. Assatourians, K., and G. M. Atkinson (2007). Modeling variable-stress distribution with the stochastic finite-fault technique, Bull. Seismol. Soc. Am. 97, 1935–1949. Atkinson, G. (1993). Source spectra for earthquakes in eastern North America, Bull. Seismol. Soc. Am. 83, 1778–1798. Atkinson, G. M, and W. Silva (2000). Stochastic modeling of California ground motions, Bull. Seismol. Soc. Am. 90, 255–274. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy), Geophys. Res. Lett. 36, L15305, doi: 10.1029/2009GL039293. Bao, H., J. Bielak, O. Ghattas, L. Kallivokas, D. O’Hallaron, J. Schewchuk, and J. Xu (1998). Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Meth. Appl. Mech. Eng. 152, 85–102.Beresnev, I., and G. M. Atkinson (1997). Modeling finite-fault radiation from the ω n spectrum, Bull. Seismol. Soc. Am. 87, 67–84. Bindi, D., F. Pacor, L. Luzi, M. Massa, and G. Ameri (2009). The Mw 6.3, 2009 L’Aquila earthquake: Source, path and site effects from spectral analysis of strong motion data, Geophys. J. Int. 179, 1573–1579. Bommer, J. J., and A. Martínez-Pereira (1999). The effective duration of earthquake strong motion, J. Earthq. Eng. 3, no. 2, 127–172. Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am. 73, 1865–1894. Boore, D. M. (2009). Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM, Bull. Seismol. Soc. Am. 99, 3202–3216. Boore, D. M., and G. M. Atkinson (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthq. Spectra 24, 99–138. Boore, D. M., and W. B. Joyner (1997). Site amplifications for generic rock sites, Bull. Seismol. Soc. Am. 87, 327–341. Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media, Bull. Seismol. Soc. Am. 71, 959–971. Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. (1971). Correction, J. Geophys. Res. 76, 5002. Camassi, P. Galli, A. Tertulliani Castenetto, A. Lucantoni, D. Molin, G. Naso, E. Peronace, F. Bernardini, V. Castelli, A. Cavaliere, E. Ercolani, S. Salimbeni, D. Tripone, G. Vannucci, L. Arcoraci, M. Berardi, C. Castellano, S. Del Mese, L. Graziani, I. Leschiutta, A. Maramai, A. Massucci, A. Rossi, M. Vecchi, R. Azzaro, S. D’Amico, F. Ferrari, N. Mostaccio, R. Platania, L. Scarfa, T. Tuvé, L. Zuccarello, S. Carlino, A. Marturano, P. Albini, A. Gomez Capera, M. Locati, F. Meroni, V. Pessina, C. Piccarreda, A. Rovida, M. Stucchi, G. Buffarini, S. Paolini, V. Verrubbi, M. Mucciarelli, R. Gallipoli, M. S. Barbano, I. Cecic, and M. Godec, (2009). Macroseismic investigation: Method, earthquake parameters, open questions (Lâ indagine macrosismica: metodologia, parametri del terremoto, questioni aperte), Progettazione Sismica, 3, 49–55 (in Italian). Campbell, K. W., and Y. Bozorgnia (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra 24, 139–171. Cartwright, D. E., and M. S Longuet-Higgins (1956). The statistical distribution of the maxima of a random function, Proc. Roy. Soc. Lond., Series A 237, 212–232. Chen, X., and H. Zhang (2001). An efficient method for computing Green’s functions for a layered half-space at large epicentral distances, Bull. Seismol. Soc. Am. 91, 858–869. Chiarabba, C., A. Amato, M. Anselmi, P. Baccheschi, I. Bianchi, M. Cattaneo, G. Cecere, L. Chiaraluce, M. G Ciaccio, P. De Gori, G. De Luca, G. Di Bona, R. Di Stefano, L. Faenza, A. Govoni, L. Improta, F. P. Lucente, A. Marchetti, L. Margheriti, F. Mele, A. Michelini, G. Monachesi, M. Moretti, M. Pastori, N. Piana Agostinetti, D. Piccinini, P. Roselli, D. Seccia, and L. Valoroso (2009), The 2009 L’Aquila (central Italy) Mw 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett. 36, L18308, doi: 10.1029/2009GL039627. Chioccarelli, E., and I. Iervolino (2010). Near-source seismic demand and pulse-like records: A discussion for L’Aquila earthquake, Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.987. Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009). Rupture history of the 2009 L’Aquila (Italy) earthquake from non-linear joint inversion of strong motion and GPS data, Geophys. Res. Lett. 36, L19304, doi: 10.1029/ 2009GL039795. De Luca, G., S. Marcucci, G. Milana, and T. Sanò (2005). Evidence of lowfrequency amplification in the city of L’Aquila, central Italy, through a multidisciplinary approach including strong- and weak-motion data,ambient noise, and numerical modeling, Bull. Seismol. Soc. Am. 95, 1469–1481. Di Capua, G., G. Lanzo, L. Luzi, F. Pacor, R. Paolucci, S. Peppoloni, G. Scasserra, and R. Puglia (2009). Geological characteristic and classifications of the accelerometric stations located in L’Aquila. (Caratteristiche geologiche e classificazione di sito delle stazioni accelerometriche della RAN ubicate a L’Aquila). INGV, DPC Project S4, Technical Report, 28 pp. (in Italian). Faenza, L., V Lauciani, and A. Michelini (2009). Shakemaps of the L’Aquila mainshock (Abstract U23B-0036), Eos Trans. AGU 90, no. 52 (Fall Meet. Suppl.). Faenza, L., and A. Michelini (2010). Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int. 180, 1138–1152. Frankel, A., C. Mueller, T. Barnhard, D. Perkins, E. V. Leyendecker, N. Dickman, S. Hanson, and M. Hopper (1996). National Seismic Hazard Maps: Documentation, U.S. Geol. Surv. Open-File Rept. 96- 532, 110 pp. Hanks, T. C., and R. K. McGuire (1981). The character of highfrequency strong ground motion, Bull. Seismol. Soc. Am. 71, 2071– 2095. Hartzell, S. (1978). Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5, 1–14. Herrmann, R. B., L. Malagnini, and I. Munafò (2011). Regional moment tensors of the 2009 L’Aquila earthquake sequence, Bull. Seismol. Soc. Am. 101, 975–993. Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths, Bull. Seismol. Soc. Am. 84, 1456–1472. Irikura, K. (1986). Prediction of strong acceleration motions using empirical Green’s function, in Proc. of the 7th Japan Earthq. Eng. Symp., Tokyo, Japan, 151–156. Liel, A. B., and K. P. Lynch (2009). Vulnerability of reinforced concrete frame buildings and their occupants in the 2009 L’Aquila, Italy earthquake, in Quick Response Report 213, Natural Hazards Center, Boulder, Colorado, 20 pp. Luco, E. J., H. I. Wong, and F. C. P. de Barros (1990). Three-dimensional response of a cylindrical crayon in a layered half-space, Earthq. Eng. Struct. Dyn. 19, 799–817. Mai, P. M., W. Imperatori, and K. B. Olsen (2010). Hybrid broadband ground-motion simulations: Combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering, Bull. Seismol. Soc. Am. 100, 2124–2142. Malagnini, L., A. Akinci, K. Mayeda, I. Munafò, R. B. Herrmann, and A. Mercuri (2010). Characterization of earthquake-induced ground motion from the L’Aquila seismic sequence of 2009, Italy, Geophys. J. Int. 184, 325–337 doi: 10.1111/j.1365-246X.2010.04837.x. Malagnini, L., L. Scognamiglio, A. Mercuri, A. Akinci, and K. Mayeda (2008). Strong evidence for non-similar earthquake source scaling in central Italy, Geophys. Res. Lett. 35, L17303. Mayeda, K., L. Malagnini, and W. R. Walter (2007). A new spectral ratio method using narrow band coda envelopes: Evidence for non-selfsimilarity in the Hector Mine sequence, Geophys. Res. Lett. 34, L11303, doi: 10.1029/2007GL030041. Moczo, P., J. Kristek, V. Vavryčuk, R. J. Archuleta, and L. Halada (2002). 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am. 92, 3042–3066. Montaldo, V., E. Faccioli, G. Zonno, A. Akinci, and L. Malagnini (2005). Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy, J. Seismol. 9, no. 3, 295–316. Motazedian, D., and G. M. Atkinson (2005). Stochastic finite-fault modeling based on a dynamic corner frequency, Bull. Seismol. Soc. Am. 95, 995–1010. Olsen, K. B., A. Akinci, A. Rovelli, F. Marra, and L. Malagnini, (2006). 3D ground-motion estimation in Rome, Italy, Bull. Seismol. Soc. Am. 96, 133–146, doi: 10.1785/0120030243.Olsen, K. B., and R. J. Archuleta (1996). Three-dimensional simulation of earthquakes on the Los Angeles fault system, Bull. Seismol. Soc. Am. 86, 575–596. Papadopoulos, G. A., M. Charalampakis, A. Fokaefs, and G. Minadakis (2010). Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009, Nat. Hazards Earth Syst. Sci. 10, 19–24. Pedersen, H. A., F. J. Sánchez-Sesma, and M. Campillo (1994). Threedimensional scattering by two-dimensional topographies, Bull. Seismol. Soc. Am. 84, 1169–1183. Pino, N. A., and F. Di Luccio (2009). Source complexity of the 6 April 2009 L’Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett. 36, L23305, doi: 10.1029/2009GL041331. Rovelli, A., O. Bonamassa, M. Cocco, M. Di Bona, and S. Mazza (1988). Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy, Bull. Seismol. Soc. Am. 78, 530–560. Sabetta, F., and A. Pugliese (1996). Estimation of response spectra and simulation of nonstationary earthquake ground motions, Bull. Seismol. Soc. Am. 86, 337–352. Saragoni, G. R., and G. C. Hart (1974). Simulation of artificial earthquakes, Earthq. Eng. Struct. Dyn., 2, 249–267. Scherbaum, F., J. Schmedes, and F. Cotton (2004). On the conversion of source-to-site distance measures for extended earthquake source models, Bull. Seismol. Soc. Am. 94, 1053–1069. Scognamiglio, L., E. Tinti, A. Michelini, D. Dreger, A. Cirella, M. Cocco, S. Mazza, and A. Piatanesi (2010). Fast determination of moment tensors and rupture history: What has been learned from the 6 April 2009 L’Aquila earthquake sequence, Seismol. Res. Lett. 81, no 6. Sieberg, A. (1932). Geologie der Erdbeben, Handbuch der Geophysik, Gutenberg, B. (Editor), Vol. 2, Gebrüder Bornträger, Berlin, Germany, 550–555 (in German)Toro, G. R., and R. K. McGuire (1987). An investigation into earthquake ground motion characteristics in eastern North America, Bull. Seismol. Soc. Am. 77, 468–489. Toshinawa, T., and T. Ohmachi (1992). Love-wave propagation in a threedimensional basin, Bull. Seismol. Soc. Am. 82, 1661–1677. Wessel, P., and W. H. F. Smith (1998). New, improved version of the Generic Mapping Tools released, Eos Trans. AGU 79, 579.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0037-1106en
dc.relation.eissn1943-3573en
dc.contributor.authorUgurhan, B.en
dc.contributor.authorAskan, A.en
dc.contributor.authorAkinci, A.en
dc.contributor.authorMalagnini, L.en
dc.contributor.departmentMETU, ANKARA, TURKEYen
dc.contributor.departmentMETU, ANKARA,TURKEYen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptMETU, ANKARA, TURKEY-
crisitem.author.deptMETU, ANKARA,TURKEY-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Ugurhan_etal_BSSA2012.pdf1.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s)

283
checked on Apr 24, 2024

Download(s)

22
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric