Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7723
DC FieldValueLanguage
dc.contributor.authorallPietrella, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2012-02-15T13:11:27Zen
dc.date.available2012-02-15T13:11:27Zen
dc.date.issued2012-02-08en
dc.identifier.urihttp://hdl.handle.net/2122/7723en
dc.description.abstractA short-term ionospheric forecasting empirical regional model (IFERM) has been developed to predict the state of the critical frequency of the F2 layer (foF2) under different geomagnetic conditions. IFERM is based on 13 short term ionospheric forecasting empirical local models (IFELM) developed to predict foF2 at 13 ionospheric observatories scattered around the European area. The forecasting procedures were developed by taking into account, hourly measurements of foF2, hourly quiettime reference values of foF2 (foF2QT), and the hourly timeweighted accumulation series derived from the geomagnetic planetary index ap, (ap(τ )), for each observatory. Under the assumption that the ionospheric disturbance index ln(foF2/foF2QT) is correlated to the integrated geomagnetic disturbance index ap(τ ), a set of statistically significant regression coefficients were established for each observatory, over 12 months, over 24 h, and under 3 different ranges of geomagnetic activity. This data was then used as input to compute short-term ionospheric forecasting of foF2 at the 13 local stations under consideration. The empirical storm-time ionospheric correction model (STORM) was used to predict foF2 in two different ways: scaling both the hourly median prediction provided by IRI (STORM foF2MED,IRI model), and the foF2QT values (STORM foF2QT model) from each local station. The comparison between the performance of STORM foF2MED,IRI, STORM foF2QT, IFELM, and the foF2QT values, was made on the basis of root mean square deviation (r.m.s.) for a large number of periods characterized by moderate, disturbed, and very disturbed geomagnetic activity. The results showed that the 13 IFELM perform much better than STORM foF2MED,IRI and STORM foF2QT especially in the eastern part of the European area during the summer months (May, June, July, and August) and equinoctial months (March, April, September, and October) under disturbed and very disturbed geomagnetic conditions, respectively. The performance of IFELM is also very good in the western and central part of the Europe during the summer months under disturbed geomagnetic conditions. STORM foF2MED,IRI performs particularly well in central Europe during the equinoctial months under moderate geomagnetic conditions and during the summer months under very disturbed geomagnetic conditions. The forecasting maps generated by IFERM on the basis of the results provided by the 13 IFELM, show very large areas located at middle-high and high latitudes where the foF2 predictions quite faithfully match the foF2 measurements, and consequently IFERM can be used for generating short-term forecasting maps of foF2 (up to 3 h ahead) over the European area.en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publicationsen
dc.relation.ispartofAnnales Geophysicaeen
dc.relation.ispartofseries2/30 (2012)en
dc.subjectIonosphere (Ionosphere-magnetosphere interactions; Ionospheric disturbances; Modeling and forecasting)en
dc.titleA short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European areaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber343–355en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneousen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.03. Forecastsen
dc.identifier.doi10.5194/angeo-30-343-2012en
dc.relation.referencesAraujo-Pradere, E. A., Fuller-Rowell, T. J., and Codrescu, M. V.: STORM: an empirical storm-time ionospheric correction model 1. Model description, Radio Sci., 37, RS1070, doi:10.1029/2001RS002467, 2002. Belehaki, A., Moraitis, G., and Tsagouri, I.: On the derivation of an hourly local index to define the normal ionosphere, Annali di Geofisica, 43, 189–203, 2000. Bilitza, D.: IRI 2000, Radio Sci., 36, 261–276, doi:10.1029/2000RS002432, 2001. Bilitza, D. and Reinisch, B.W.: International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42, 599–609, doi:10.1016/j.asr.2007.07.048, 2008. Bradley, P.: PRIME (Prediction and Retrospective Ionospheric Modelling over Europe), Cost Action 238, Final Report, Rutherford Appleton Laboratory, Chilton Didcot, UK, 1999. Buonsanto, M. J.: Ionospheric Storms – A review, Space Sci. Rev., 88, 563–601, 1999. Burns, A. G. and Killen, T. L.: The equatorial neutral thermospheric response to geomagnetic forcing, Geophys. Res. Lett., 19, 977– 980, 1992. Cander, Lj. R. and Mihajlovic, S. J.: Forecasting ionospheric structure during the great geomagnetic storms, J. Geophys. Res., 103, 391–398, doi:10.1029/97JA02418, 1998. Cander, Lj. R., Milosavljevic, M. M., Stankovic, S. S., and Tomasevic, S.: Ionospheric forecasting technique by artificial neural network, Electronics Lett., 34, 1573–1574, 1998. Comite Consultatif International des Radio Communications (CCIR): Atlas of ionospheric characteristics, Rep 340-6 Geneva, 1991. Cooper, J., Barbatsi, K., Gulyaeva, T. L., Moraitis, G. A., Spoelstra, T. A. Th., Stanislawska, I., Radicella, S. M., and Zhang, M. L.: PRIME Catalogue of undisturbed days No. 1 in proceedings of COST 238 Workshop, Universitat Graz, Austria, Part 1, 1993. Fuller-Rowell, T. J., Codrescu, M. V., Roble, R. G., and Richmond, A. D.: How does the thermosphere and ionosphere react to a geomagnetic storm?, in: Magnetic Storms, edited by: Tsurutani, B. T., Gonzales, W. D., Kamide, Y., and Arballo, J. K., Geophysical Monograph 98, American Geophysical Union, Washington, D.C., 1997. Hanbaba, R.: Improved quality of services ionospheric telecommunication systems planning and operation, Cost Action 251, Final Report, Published by Space Research Centre,Warsaw, Poland, 1999. Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, doi:10.1007/s00585-996-0917-6, 1996. International Telecommunication Union (ITU): ITU-R reference ionospheric characteristics and methods for basic MUF, operational MUF and ray-paths predictions, Recommendation ITU-R P. 1239, Geneva, 1997. IPS-Radio and Space Services: ASAPS V6, available at: http: //www.ips.gov.au/Products and Services/1/1, undated, last accessed November 2011. Jones, W. B. and Gallet, R. M.: Representation of diurnal and geographical variation of ionospheric data by numerical methods, Telecommun. J., 29, 129–149, 1962. Joselyn, J. A.: Geomagnetic activity forecasting; the state of the art, Rev. Geophys., 33, 383–401, 1995. Kouris, S. S. and Fotiadis, D. N.: Ionospheric variability: a comparative statistical study, Adv. Space Res., 29, 977–985, 2002. Kozin, I. D., Kozin, V. I., and Fedulina, I. N.: On a choice of the ionospheric disturbance indices, Geomagn. Aeron., 35, 111–112, 1995. Mendillo, M.: A study of the relationship between geomagnetic storms and ionospheric disturbances at mid-latitudes, Planet. Space. Sci., 21, 349–358, 1973. Muhtarov, P. and Kutiev, I.: Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data, Radio Sci., 34, 459–464, 1999. Oyeyemi, E. O., Poole, A. W. V., and McKinnell, L. A.: On the global short-term forecasting of the ionospheric critical frequency foF2 up to 5 hours in advance using neural networks, Radio Sci., 40, RS6012, doi:10.1029/2004RS003239, 2005. Perrone, L., De Franceschi, G., and Gulyaeva, T. L.: The timeweighted magnetic indices ap( ), PC( ), AE( ) and their correlation to the southern high latitude ionosphere, Phys. Chem. Earth (C), 26, 331–334, 2001. Pezzopane, M., Pietrella, M., Pignatelli, A., Zolesi, B., and Cander, Lj. R.: Assimilation of autoscaled data and regional and local ionospheric models as input sources for a real-time 3-D International Reference Ionosphere modelling, Radio Sci., 46, RS5009, doi:10.1029/2011RS004697, 2011. Pietrella, M. and Perrone, L.: Instantaneous Space Weighted Ionospheric Regional Model for instantaneous mapping of the critical frequency of the F2 layer in the European region, Radio Sci., 40, RS1005, doi:10.1029/2003RS003008, 2005. Pietrella, M. and Perrone, L.: A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys., 26, 323– 334, doi:10.5194/angeo-26-323-2008, 2008. Pietrella, M., Bianchi, C., and Scotto, C.: Electronic density contours and gravity waves, Il Nuovo Cimento, 20 C, 609–612, 1997. Pietrella, M., Perrone, L., Fontana, G., Romano, V., Malagnini, A., Tutone, G., Zolesi, B., Cander, Lj. R., Belehaki, A., Tsagouri, I., Kouris, S. S., Vallianatos, F., Makris, J., and Angling, M.: Oblique-incidence ionospheric soundings over Central Europe and their application for testing now casting and long term prediction models, Adv. Space Res., 43, 1611–1620, 2009. Pr¨olss, G. W.: Ionospheric F region storms, in: Handbook of atmospheric electrodynamics, 2, edited by: Volland, H., CRC Press, Boca Raton, 195–248, 1995. Pr¨olss, G.W.: Magnetic storm associated perturbations of the upper atmosphere, in: Magnetic Storms, Geophysical Monograph 98, edited by: Tsurutani, B. T., Gonzales, W. D., Kamide, Y., and Arballo, J. K., American Geophysical Union, Washington, D.C., 1997. Richmond, A. D. and Matsushita, S.: Thermospheric response to a magnetic substorm, J. Geophys. Res., 80, 2839–2850, 1975. Rishbeth, H., Fuller-Rowell, T. J., and Rees, D.: Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study, Planet. Space Sci., 35, 1157–1165, 1987. Roble, R. G., Richmond, A. D., Oliver, W. L., and Harper, R. M.: Ionospheric effects of the gravity wave launched by the September 18, 1974, Sudden Commencement, J. Geophys. Res., 83, 999–1009, 1978. Stewart, F. G.: ICEPAC-Technical Manual, available at: http:// www.greg-hand.com/manuals/icepac tech manual.pdf, undated, last access date: February 2009. Testud, J.: Gravity waves generated during magnetic substorm, J. Atmos. Terr. Sci., 32, 1793–1805, 1970. Titheridge, J. E.: Non periodic irregularities in the ionosphere, J. Geophys. Res., 76, 6955–6960, 1971. Thomson, A. W. P.: Neural networks and non-linear prediction of geomagnetic activity, in: Proceedings of the 1993 International Workshop on Artificial Intelligence Applications in Solar Terrestrial Physics, 133 p., 1993. Thomson, A.W. P., Clark, T. D. G., and Kerridge, D. J.: Forecasting Ap in the short-term using time series analysis, in: Proceedings of the 1992 Solar-Terrestrial Predictions Workshop, 3, 269 p., 1993. Wrenn, G. L.: Time-Weighted accumulations ap( ) and Kp( ), J. Geophys. Res., 92, 10125–10129, 1987. Wrenn, G. L. and Rodger, A. S.: Geomagnetic modification of the mid-latitude ionosphere: toward a strategy for the improved forecasting of foF2, Radio Sci., 24, 99–111, 1989. Wrenn, G. L., Rodger, A. S., and Rishbeth, H.: Geomagnetic storms in Antarctic F region. I. Diurnal and seasonal patterns in main phase effects, J. Atmos. Terr. Phys., 49, 901–913, 1987. Zolesi, B. and Cander, Lj. R.: Advances in regional ionospheric mapping over Europe, Ann. Geofis., 41, 827–842, 1998. Zolesi, B., Belehaki, A., Tsagouri, I., and Cander, Lj. R.: Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Sci., 39, RS2011, doi:10.1029/2003RS002936, 2004. Zolesi, B., Fontana, G., Perrone, L., Pietrella, M., Romano, V., Tutone, G., Belehaki, A., Tsagouri, I., Kouris, S. S., Vallianatos, F., Makris, J. P., and Angling, M. J.: A new campaign for obliqueincidence ionospheric sounding over Europe and its data application, J. Atmos. Terr. Phys., 70, 854–865, 2008.en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0992-7689en
dc.relation.eissn1432-0576en
dc.contributor.authorPietrella, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-9069-4090-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
published.pdf1.81 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

20
checked on Feb 10, 2021

Page view(s) 20

286
checked on Apr 24, 2024

Download(s) 50

150
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric