Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7701
DC FieldValueLanguage
dc.contributor.authorallMazzini, A.; Physics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSvensen, H.; Physics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.date.accessioned2012-02-02T15:34:50Zen
dc.date.available2012-02-02T15:34:50Zen
dc.date.issued2012-02en
dc.identifier.urihttp://hdl.handle.net/2122/7701en
dc.description.abstractThe 29th of May 2006 gas and mud eruptions suddenly appeared along the Watukosek fault in the north east of Java, Indonesia. Within a few weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date (November 2011) Lusi is still active and a ~7 km2 area is covered by the burst mud breccia. The mechanisms responsible for this devastating eruption remain elusive. While there is consensus about the origin of the erupted mud, the source of water is uncertain, the origin of the gas is unknown and the trigger of the eruption is still debated. In order to shed light on these unknowns, we acquired a wide set of data of molecular and isotopic composition of gas sampled in several Lusi vents, in the surrounding mud volcanoes, in the closest natural gas field (Wunut), and in the hydrothermal vents at the neighbouring volcanic complex in the period 2006–2011. The boiling fluids erupted in the crater zone are apparently CO2-dominated, while colder CH4-dominated and C2–C3 bearing fluids are identified at several sites around the crater zone. Gas genetic diagrams, maturity plots and gas generation modelling suggest that the hydrocarbons are thermogenic (δ¹³C1 up to −35‰; δ¹³C2 up to −20‰), deriving from marine kerogen with maturity of at least 1.5%Ro, for instance in the ~4400 m deep Ngimbang source rocks. CO2 released from the crater and surrounding seeps is also thermogenic (δ¹³C from −15 to −24‰) related to kerogen decarboxylation or thermal CH4 oxidation in deep rocks, although three vents just outside the crater showed an apparent inorganic signature (−7.5 ‰< δ¹³C=−0.5‰) associated to mantle helium (R/Ra up to 6.5). High CO2–CH4 equilibrium temperatures (200–400 °C) are typical of thermally altered hydrocarbons or organic matter. The data suggest mainly thermally altered organic sources for the erupted gases, deeper sourced than the mud and water (Upper Kalibeng shales). These results are consistent with a scenario of deep seated (>4000 m) magmatic intrusions and hydrothermal fluids responsible for the enhanced heat that altered source rocks and/or gas reservoirs. The neighbouring magmatic Arjuno complex and its fluid–pressure system combined with high seismic activity could have played a key role in the Lusi genesis and evolution. Within this new model framework, Lusi is better understood as a sediment-hosted hydrothermal system rather than a mud volcano.en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V.en
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/317-318 (2012)en
dc.subjectLusi eruptionen
dc.subjectsediment-hosted hydrothermal systemen
dc.subjectmud volcanoesen
dc.subjectgas originen
dc.subjectCO2 and CH4en
dc.subjectmantleen
dc.titleA new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistryen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber305–318en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.epsl.2011.11.016en
dc.relation.referencesAliyev, A., Guliyev, I.S., Belov, I.S., 2002. Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan. Nafta Press, Baku. 87 p. Ardhana, W., 1993. A depositional model for the Early Middle Miocene Ngrayong formation and implications for exploration in the east Java Basin. IPA 22nd Annual Convention Proceedings, v. IPA93-1.1-020, pp. 395–443. Bernard, B.B., Brooks, J.M., Sackett, W.M., 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res. 83, 4053–4061. Berner, U., Faber, E., 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Org. Geochem. 24 (10–11), 947–955. Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochimica et Cosmochimica Acta 33 (1), 49–64. Carn, S.A., 2000. The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J. Volcanol. Geotherm. Res. 95 (1–4), 81–108. Chung, H., Gormly, J., Squires, R., 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem. Geol. 71 (1–3), 97–104. Clayton, C., 1995. Controls on the carbon isotope ratio of carbon dioxide in oil and gas fields. 44th September In: Grimalt, J.O., Dorronsoro, C. (Eds.), Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History: Selected papers from 17th International Meeting on organic geochemistry, Donosits-San Sebastian, pp. 1073–1074. Cooper, B.A., Raven, M., Samuel, J., Hardjono, L., Satoto, W., 2006. Origin and geological controls on subsurface CO2 distribution with examples from western Indonesia. Proceedings International Conference on Petroleum Systems of SE Asia and Australasia, pp. 877–892. Davies, R., Swarbrick, R., Evans, R., Huuse, M., 2007. Birth of a mud volcano: East Java 29 May 2006 GSA Today 17, 4–9. Davies, R.J., Mathias, S.A., Swarbrick, R.E., Tingay, M.J., 2011. Probabilistic longevity estimate for the Lusi mud volcano, East Java. J. Geol. Soc. 168 (2), 517–523. Delle Donne, D., Harris, A.J.L., Ripepe, M., Wright, R., 2010. Earthquake-induced thermal anomalies at active volcanoes. Geology 38 (9), 771–774. Deville, E., Guerlais, S.H., 2009. Cyclic activity of mud volcanoes: evidences from Trinidad (SE Caribbean). Mar. Pet. Geol. 26 (9), 1681–1691. Doust, H., Noble, R.A., 2008. Petroleum systems of Indonesia. Mar. Pet. Geol. 25 (2), 103–129. Essam Sharaf, J.A., Simo, C.A.R., Shields, M., 2005. Stratigraphic evolution of Oligocene– Miocene carbonates and siliciclastics, East Java Basin, Indonesia. AAPG Bull. 98 (6), 799–819. Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C., 2002. Methane emission from the mud volcanoes of Sicily (Italy). Geophys. Res. Lett. 29 (8), 1215. Etiope, G., Feyzullayev, A., Baciu, C.L., 2009a. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar. Pet. Geol. 26 (3), 333–344. Etiope, G., Feyzullayev, A., Milkov, A.V., Waseda, A., Mizobe, K., Sun, C.H., 2009b. Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes. Mar. Pet. Geol. 26 (9), 1692–1703. Etiope, G., Baciu, C.L., Schoell, M., 2011a. Extreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania). Chem. Geol. 280 (1–2), 89–96. Etiope, G., Nakada, R., Tanaka, K., Yoshida, N., 2011b. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4– CO2 fluxes. Appl. Geochem. 26, 348–359. Etiope, G., Schoell, M., Hosgormez, H., 2011c. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Plan. Sci. Lett. 310, 96–104. Furi, E., Hilton, D.R., Tryon, M.D., Brown, K.M., McMurtry, G.M., Bruckmann, W., Wheat, C.G., 2010. Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin. Geochem. Geophys. Geosyst. 11 p. Harris, A.J.L., Ripepe, M., 2007. Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys. Res. Lett. 34, L02304. doi:10.1029/2006GL028251. Istadi, B.P., Pramono, G.H., Sumintadireja, P., Alam, S., 2009. Modeling study of growth and potential geohazard for Lusi mud volcano: East Java, Indonesia. Mar. Pet. Geol. 26 (9), 1724–1739. Jamtveit, B., Svensen, H., Podladchikov, Y., Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society, London, Special Publications 234, 233–241. Jenden, P.D., Hilton, D.R., Kaplan, I.R., Craig, H., 1993. Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell, D.G. (Ed.), The Future of Energy Gases, (US Geological Survey Professional Paper 1570). United States Government Printing Office, Washington, pp. 31–56. Kholodov, V.N., 2002. Mud volcanoes: distribution regularities and genesis (communication 2. geological–geochemical peculiarities and formation model). Lithol. Miner. Resour. 37 (4), 293–310. Kopf, A.J., 2002. Significance of mud volcanism. Review of Geophysics 40 (2), 1–52. Kusumastuti, A., Darmoyo, A.B., Wahyudin, S., Sosromihardjo, S.P.C., 2000. The Wunut Field: Pleistocene volcaniclastic gas sands in East Java. IPA 27th Annual Convention Proceedings. . v. IPA99-G-012. Kusumastuti, A., Van Rensbergen, P., Warren, J.K., 2002. Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait, East Java. Indonesia Aapg Bulletin 86, 213–232. Manga, M., 2007. Did an earthquake trigger the May 2006 eruption of the Lusi mud volcano? Eos 88 (18), 201. Manga, M., Brumm, M., Rudolph, M.L., 2009. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 26 (9), 1785–1798. Mazzini, A., Svensen, H., Akhmanov, G.G., Aloisi, G., Planke, S., Malthe-Sorenssen, A., Istadi, B., 2007. Triggering and dynamic evolution of the Lusi mud volcano, Indonesia. Earth Planet. Sci. Lett. 261 (3–4), 375–388. Mazzini, A., Nermoen, A., Krotkiewski, M., Podladchikov, Y., Planke, S., Svensen, H., 2009. Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia. Mar. Pet. Geol. 26 (9), 1751–1765. Mazzini, A., Svensen, H., Etiope, G., Onderdonk, N., Banks, D., 2011. Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA). J. Volcanol. Geotherm. Res. 205 (3–4), 67–83. Milkov, A.V., 2011. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org. Geochem. 42 (2), 184–207. Mori, J., Kano, Y., 2009. Is the 2006 Yogyakarta earthquake related to the triggering of the Sidoarjo, Indonesia mud volcano? J. Geogr. 118 (3), 492–498. Motyka, R.J., Poreda, R.J., Jeffrey, A.W.A., 1989. Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanos in the Copper River Basin, Alaska. Geochimica et Cosmochimica Acta 53 (1), 29–41. Nakada, R., Takahashi, Y., Tsunogai, U., Zheng, G., Shimizu, H., Hattori, K.H., 2011. A geochemical study on mud volcanoes in the Junggar Basin, China. Appl. Geochem. 26 (7), 1065–1076. Plumlee, G.S., Casadevall, T.J., Wibowo, H.T., Rosenbauer, R.J., Johnson, C.A., Breit, G.N., Lowers, H.A., Wolf, R.E., Hageman, P.L., Goldstein, H., Anthony, M.W., Berry, C.J., Fey, D.L., Meeker, G.P., Morman, S.A., 2008. Preliminary analytical results for a mud sample collected from the Lusi mud volcano, Sidoarjo, East Java, Indonesia. U.S. Geological Survey Open-File Report 2008-1019. Rudolph, M.L., Karlstrom, L., Manga, M., 2011. A prediction of the longevity of the Lusi mud eruption. Indonesia: Earth Planet. Sci. Lett. 308 (1–2), 124–130. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119 (1–4), 265–274. Sano, Y., Wakita, H., 1988. Precise measurement of helium-isotopes in terrestrial gases. Bulletin of the Chemical Society of Japan 61 (4), 1153–1157. Satyana, A.H., Purwaningsih, M.E.M., 2003. Geochemistry of the East Java Basin: New Observations on Oil Grouping, Genetic Gas Types and Trends of Hydrocarbon Habitats: Proceedings Indonesian Petroleum Association, 29th Annual Convention and Exhibition, October 2003. Sawolo, N., Sutriono, E., Istadi, B.P., Darmoyo, A.B., 2009. The Lusi mud volcano triggering controversy: was it caused by drilling? Mar. Pet. Geol. 26 (9), 1766–1784. Sawolo, N., Sutriono, E., Istadi, B.P., Darmoyo, A.B., 2010. Was Lusi caused by drilling? Authors reply to discussion. Mar. Pet. Geol. 27 (7), 1658–1675. Schoell, M., 1983. Genetic-characterization of natural gases. Aapg Bulletin-American Association of Petroleum Geologists 67 (3), 2225–2238. Seewald, J.S., Seyfried Jr., W.E., Shanks Iii, W.C., 1994. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: an experimental and theoretical study of hydrothermal activity at Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta 58 (22), 5065–5082. Shnyukov, E.F., Sobolevskiy, Y.V., Gnatenko, G.I., Naumenko, P.I., Kutniy, V.A., 1986. Mud Volcanoes of Kerch–Taman Region. Naukova Dumka, Kiev, p. 152 (in Russian). Simoneit, B.R.T., 1985. Hydrothermal petroleum — genesis, migration, and deposition in Guaymas Basin, Gulf of California. Canadian Journal of Earth Sciences 22 (12), 1919–1929. Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T., Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545. Svensen, H., Jamtveit, B., Planke, S., Chevallier, L., 2006. Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J. Geol. Soc. 163, 671–682. Tang, Y., Perry, J.K., Jenden, P.D., Schoell, M., 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta 64 (15), 2673–2687. Tanikawa, W., Sakaguchi, M., Wibowo, H.T., Shimamoto, T., Tadai, O., 2010. Fluid transport properties and estimation of overpressure at the Lusi mud volcano, East Java Basin. Eng. Geol. 116 (1–2), 73–85. Tingay, M.R.P., Heidbach, O., Davies, R., Swarbrick, R., 2008. Triggering of the Lusi mud eruption: earthquake versus drilling initiation. Geology 36 (8), 639–642. Walter, T.R., Wang, R., Zimmer, M., Grosser, H., Lu¨hr, B., Ratdomopurbo, A., 2007. Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys. Res. Lett. 34, L05304. Wignall, P.B., 2001. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53 (1–2), 1–33. Wiloso, D.A., Subroto, E., Hermanto, E., 2009. Confirmation of the Paleogene Source Rocks in the Northeast Java Basin, Indonesia, Based from Petroleum Geochemistry: Search and Discovery Article v. #10195.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMazzini, A.en
dc.contributor.authorEtiope, G.en
dc.contributor.authorSvensen, H.en
dc.contributor.departmentPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norway-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mazzini-Etiope-Svensen-2012_EPSL_Lusi.pdf2.46 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

59
checked on Feb 10, 2021

Page view(s) 50

165
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric