Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7576
Authors: Augliera, P.* 
D'Alema, E.* 
Franceschina, G.* 
Marzorati, S.* 
Massa, M.* 
Marchesi, E.* 
Marzorati, D.* 
Title: Micro-Seismicity Monitoring for a Cushion Gas Storage Project in Italy
Journal: Miscellanea INGV 
Series/Report no.: 12/(2011)
Publisher: INGV
Issue Date: 2011
URL: http://istituto.ingv.it/l-ingv/produzione-scientifica/miscellanea-ingv/copy_of_numeri-pubblicati-2010/2011-12-20.4239345791
Keywords: seismic monitoring
gas storage
micro-seismicity
Subject Classification04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous 
04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods 
04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous 
04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring 
04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques 
Abstract: A Pilot Project for CO2 injection and storage was proposed for a gas storage area located at Cortemaggiore (Piacenza), in northern Italy. This project is conducted both to verify the injection techniques and to analyze the potentiality of CO2 as a cushion gas. Starting from 2004, a series of analysis has been conducted to verify suitability and feasibility of this operation. The injection phase will be preceded by a passive seismic monitoring in order to measure the background seismicity of the area. Seismic monitoring will be carried out during the 3 years of the injection phase and will continue also for a control period of 2 years, following the working phase. The Milano - Pavia Department of the Istituto Nazionale di Geofisica e Vulcanologia is in charge of the surface seismic monitoring. To study the background seismicity a microseismic network composed by 7 seismic stations has been realized. On February 2010, a first test phase has been conducted for 3 sites. The network was completed with 4 more stations on May 2010. All stations are composed by a 24-bit digital recorder (Lennartz M24/NET) with GPS time signal. The study area is characterized by a very high anthropic and industrial noise. In order to improve the quality of the seismic signals, 4 stations have been installed in a 100 m deep borehole. The seismic sensors (Lennartz LE-3D/BH for the borehole and LE-3Dlite MKI for the installation at the surface) have similar technical characteristics with 1 Hz free period, cutoff frequency at 80 Hz and dynamic range of 136 dB. In this first stage we analyzed the microseismic noise level and evaluated the detection capability of the network. Using the RMS measurements the borehole stations indicate a reduction on the noise by a factor of 2.5. A more detailed analysis, performed using the density function distribution of the power spectra, evidences a 10 dB gain for the borehole stations in the frequency band 1 - 10 Hz. Noise measurements have been used also to determine the minimum magnitude for the events detection. Using a point source model to simulate seismic events, we verified the expected detection levels by comparing the estimates obtained with the simulation and the local events recorded by the seismic network.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
miscellanea12.pdf3.27 MBAdobe PDFView/Open
Show full item record

Page view(s) 50

402
checked on Apr 24, 2024

Download(s) 20

348
checked on Apr 24, 2024

Google ScholarTM

Check