Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7524
DC FieldValueLanguage
dc.contributor.authorallGaleotti, S.; Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università degli Studi di Urbino, Campus Scientifico ‘Enrico Mattei’, Località Crocicchia, 61029 Urbino, Italyen
dc.contributor.authorallLanci, L.; Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università degli Studi di Urbino, Campus Scientifico ‘Enrico Mattei’, Località Crocicchia, 61029 Urbino, Italyen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallNaish, T. R.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealanden
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSandroni, S.; Museo Nazionale dell'Antartide, Università degli Studi di Siena, via del Laterino 8, 53100 Siena, Italyen
dc.contributor.authorallTalarico, F. M.; Dipartimento di Scienze della Terra, Università degli Studi di Siena, via del Laterino 8, 53100 Siena, Italyen
dc.date.accessioned2012-01-24T14:07:13Zen
dc.date.available2012-01-24T14:07:13Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7524en
dc.description.abstractAbout 34 million years ago, at the Eocene–Oligocene (E–O) transition, Earth's climate underwent a substantial change from relatively ice-free “green house” conditions to a glacial state marked by the establishment of a permanent ice sheet on Antarctica. Our understanding of the Antarctic cryospheric evolution across the E–O climate transition relies on indirect marine geochemical proxies and, hitherto, it has not been possible to reconcile the pattern of inferred ice-sheet growth from these “far-field” proxy records with direct physical evidence of ice sheet behaviour from the proximal Antarctic continental margin. Here we present a correlation of cyclical changes recorded in the CRP-3 drill hole sediment core from the western Ross Sea, that are related to oscillations in the volume of a growing East Antarctic Ice Sheet, with well dated lower latitude records of orbital forcing and climate change across the E–O transition. We evaluate the results in the light of the age model available for the CRP-3A succession. Our cyclostratigraphy developed on the basis of repetitive vertical facies changes and clast peak abundances within sequences matches the floating cyclochronology developed in deep-sea successions for major glacial events. The astrochronological calibration of the CRP-3 succession represents the first high-resolution correlation of direct physical evidence of orbitally controlled glaciation from the Antarctic margin to geochemical records of paleoclimate changes across the E–O climate transition.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofPalaeogeography, Palaeoclimatology, Palaeoecologyen
dc.relation.ispartofseries/335-336 (2012)en
dc.subjectAntarcticaen
dc.subjectCRP-3 drill holeen
dc.subjectCyclostratigraphyen
dc.subjectEocene–Oligocene climate transitionen
dc.titleCyclochronology of the Eocene–Oligocene transition from the Cape Roberts Project-3 core, Victoria Land basin, Antarcticaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber84-94en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.palaeo.2011.08.011en
dc.relation.referencesAllen, M.R., Smith, L.A., 1996. Monte Carlo SSA: detecting oscillations in the presence of coloured noise. Journal of Climate 9, 3373–3404. Barrett, P.J. (Ed.), 1986. Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound, Antarctica. NZ DSIR Bulletin, 237, p. 174. Barrett, P.J., 2007. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica. In: Hambrey, M.J., Christoffersen, P., Glasser, N.F., Hubbart, B. (Eds.), Glacial Processes and Products: International Association of Sedimentologists Special Publication, 39, pp. 259–287. Barrett, P.J., 2009. A history of Antarctic Cenozoic glaciation – View from the margin. In: Florindo, F., Siegert, M. (Eds.), Antarctic Climate Evolution. : Developments in Earth and Environmental Sciences, 8. Elsevier, The Netherlands, pp. 33–83. Barrett, P.J., Ricci, C.A. (Eds.), 2000. Studies from the Cape Roberts Project, Ross Sea, Antarctica, Scientific Results of CRP-2/2A. Parts I and II: Terra Antartica, 7, pp. 1–665. Barrett, P.J., Ricci, C.A. (Eds.), 2001. Studies from the Cape Roberts Project, Ross Sea, Antarctica, Scientific Results of CRP-3. Parts I and II: Terra Antartica, 8, pp. 1–621. Barrett, P.J., Elston, D.P., Harwood, D.M., McKelvey, B.C.,Webb, P.-N., 1987. Mid-Cenozoic record of glaciation and sea-level change on the margin of the Victoria Land basin, Antarctica. Geology 15, 634–637. Blackman, R.B., Tukey, J.W., 1958. The Measurement of Power Spectra from the Point of View of Communication Engineering. Dover Publications, New York. Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–6095. Cape Roberts Science Team, 1998. Initial Report from CRP-1, Cape Roberts Project, Antarctica. Terra Antartica 5, 1–187. Cape Roberts Science Team, 1999. Studies fromthe Cape Roberts Project, Ross Sea, Antarctica. Initial Report on CRP-2/2A. Terra Antartica 6, 1–173With supplement 245 pp. Cape Roberts Science Team, 2000. Studies from the Cape Roberts Project, Ross Sea, Antarctica. Initial Report on CRP-3. Terra Antartica 7, 1–209 With supplement 305 pp. Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57. DeConto, R., Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249. Fielding, C.R., Naish, T.R., Woolfe, K.J., 2001. Facies architecture of the CRP-3 drillhole, Victoria Land Basin, Antarctica. Terra Antartica 8, 217–224. Florindo, F., Wilson, G.S., Roberts, A.P., Sagnotti, L., Verosub, K.L., 2001. Magnetostratigraphy of Late Eocene–Early Oligocene strata from the CRP-3 core, Victoria Land Basin, Antarctica. Terra Antartica 8, 599–613. Florindo, F., Wilson, G., Roberts, A., Sagnotti, L., Verosub, K., 2005. Magnetostratigraphic chronology of a late Eocene to early Miocene succession from the Victoria Land Basin, Ross Sea, Antarctica. Global and Planetary Change 45, 207–236. Ghil, M., Allen, R.M., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A., Saunders, A., Tian, Y., Varadi, F., Yiou, P., 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics 40, 3.1–3.41 10.1029/2000RG000092. Hambrey, M., Wise, S. (Eds.), 1998. Studies from the Cape Roberts Project, Ross Sea, Antarctica, Scientific Report of CRP-1: Terra Antartica, 5, pp. 255–713. Hambrey, M.J., Barrett, P.J., Hall, K.J., Robinson, P.H., 1989. Stratigraphy. In: Barrett, P.J. (Ed.), Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound, Antarctica, DSIR Wellington: New Zealand Bulletin, 245, pp. 23–48. Hannah, M.J., Florindo, F., Harwood, D.M., Fielding, C.R., Cape Roberts Science Team, 2001a. Chronostratigraphy of the CRP-3 drillhole, Victoria Land Basin, Antarctica. Terra Antartica 8, 615–620. Hannah, M.J., Wrenn, J.H., Wilson, G.J., 2001b. Preliminary report on early Oligocene and latest Eocene marine palynomorphs from CRP-3 drillhole, Victoria Land Basin, Antarctica. Terra Antartica 8, 383–388. Hayes, D.E., Frakes, L.A., et al., 1975. Initial Reports of the Deep Sea Drilling Project. US Government Printing Office, Washington, DC, p. 1012. 28. Jarrard, R.D., Bücker, C.J., Wilson, T.J., Paulsen, T.S., 2001. Bedding Dips from the CRP-3 Drillhole, Victoria Land Basin, Antarctica. Terra Antartica 8 (3), 167–176. Jenkyns, H., Forster, A., Schouten, S., Damste, J., 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–891. Katz, M.E., Miller, K.G., Wright, J.D., Wade, B.S., Browning, J.V., Cramer, B.S., Rosenthal, Y., 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience. doi:10.1038/ngeo179. Larrasoana, J.C., Roberts, A.P., Stoner, J.S., Richter, C., Wehausen, R., 2003. A new proxy for bottom-water ventilation in the eastern Mediterranean based on diagenetically controlled magnetic properties of sapropel-bearing sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 221–242. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A longterm numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261–285. Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S., Leckie, M., Pearson, A., 2009. Global cooling during the Eocene–Oligocene climate transition. Science 323, 1187–1190. Miller, K.G., Wright, J.D., Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene- Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research 96, 6829–6848. Miller, K.G., Wright, J.D., Katz, M.E., Browning, J.V., Cramer, B.S., Wade, B.S., Mizintseva, S.F., 2008. A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous–Cenozoic. In: Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W., the 10th ISAES editorial team (Eds.), Antarctica: A keystone in a changing world, Proceedings of the 10th International Symposium on Antarctic Earth Sciences. The National Academies Press, Washington, DC, pp. 55–70. Naish, T.R., Barrett, P.J., Dunbar, G.B., Woolfe, K.J., Dunn, A.G., Henrys, S.A., Claps, M., Powell, R.D., Fielding, C.R., 2001a. Sedimentary cyclicity in CRP drillcore, Victoria Land Baisn, Antarctica. Terra Antartica 8, 225–244. Naish, T.R., Woolfe, K.J., Barrett, P.J., Wilson, G.S., Atkins, C., Bohaty, S.M., Bucker, C., Claps, M., Davey, F., Dunbar, G., Dunn, A., Fielding, C.R., Florindo, F., Hannah, M., Harwood, D.M., Watkins, D., Henrys, S., Krisseck, L., Lavelle, M., van der Meer, J.J.P., McIntosh, M.C., Niessen, F., Passchier, S., Powell, R., Roberts, A.P., Sagnotti, L., Scherer, R.P., Strong, C.P., Talarico, F., Verosub, K.L., Villa, G., Webb, P.-N., Wonik, T., 2001b. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723. Paillard, D., Parrenin, F., 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth and Planetary Science Letters 227, 263–271. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. EOS. Transactions of the American Geophysical Union 77, 379. Pälike, H., Norris, R.N., Herrle, J., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., Wade, B.S., 2006. The heartbeat of the Oligocene climate system. Science 314, 1894–1898. Pollard, D., DeConto, R.M., 2005. Hysteresis in Cenozoic Antarctic ice sheet variations. Global and Planetary Change 45, 9–21. Sagnotti, L., Verosub, K.L., Roberts, A.P., Florindo, F., Wilson, G.S., 2001. Environmental magnetic record of the Eocene–Oligocene transition in the CRP-3 core, Victoria Land Basin, Ross Sea, Antarctica. Terra Antartica 8, 507–516. Sandroni, S., Talarico, F., 2001. Petrography and provenance of basement clasts and clast variability in CRP-3 drillcore (Victoria Land Basin, Ross Sea, Antarctica). Terra Antartica 8, 449–468. Wilson, T.J., Paulsen, T.S., 2001. Fault and fracture patterns in CRP-3 Core, Victoria Land Basin, Antarctica. Terra Antartica 8, 177–196. Wise Jr., S.W., Smellie, J., Aghib, F., Jarrard, R., Krissek, L., 2001. Authigenic smectite clay coats in CRP-3 drillcore, Victoria Land Basin, Antarctica, as a possible indicator of fluid flow: A progress report. Terra Antartica 8, 281–298. Wrenn, J.H., Hart, G.F., 1988. Paleogene dinoflagellate cyst biostratigraphy of Seymore Island, Antarctica. In: Feldman, R.M., Woodburn, M.O. (Eds.), Geology and paleontology of Seymore Island, Antarctic Peninsula: Geological Society of America Memoir, 169, pp. 321–447. Zachos, J.C., Quinn, R.M., Salamy, K., 1996. High resolution (104 yr) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11, 251–266. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate: 65 Ma to present. Science 292, 686–693.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0031-0182en
dc.relation.eissn1872-616Xen
dc.contributor.authorGaleotti, S.en
dc.contributor.authorLanci, L.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorNaish, T. R.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorSandroni, S.en
dc.contributor.authorTalarico, F. M.en
dc.contributor.departmentDipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università degli Studi di Urbino, Campus Scientifico ‘Enrico Mattei’, Località Crocicchia, 61029 Urbino, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università degli Studi di Urbino, Campus Scientifico ‘Enrico Mattei’, Località Crocicchia, 61029 Urbino, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentAntarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentMuseo Nazionale dell'Antartide, Università degli Studi di Siena, via del Laterino 8, 53100 Siena, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Università degli Studi di Siena, via del Laterino 8, 53100 Siena, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università degli Studi di Urbino, Campus Scientifico ‘Enrico Mattei’, Località Crocicchia, 61029 Urbino, Italy-
crisitem.author.deptUniversità di Urbino-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptAntarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand - GNS Sciences, Lower Hutt, New Zealand-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptMuseo Nazionale dell'Antartide, Università degli Studi di Siena, via del Laterino 8, 53100 Siena, Italy-
crisitem.author.deptUniversità di Siena, Siena, Italy-
crisitem.author.orcid0000-0002-3389-6371-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-7254-4301-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Galeotti et al 2012 Palaeo3 335-336 84-94.pdf1.93 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 50

228
checked on Apr 24, 2024

Download(s)

30
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric