Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7297
Authors: Branca, S.* 
Coltelli, M.* 
Groppelli, G.* 
Lentini, F.* 
Title: Geological map of Etna volcano, 1:50,000 scale
Journal: Italian Journal Geosciences 
Series/Report no.: 3/130 (2011)
Publisher: Società Geologica Italiana
Issue Date: 2011
DOI: 10.3301/IJG.2011.15
Keywords: Mount Etna, geological map, basaltic composite
Subject Classification04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous 
Abstract: The new geological map of Etna volcano at 1:50,000 scale represents a significant progress in the geological studies of this volcano over the last 30 years, coming after Waltershausen’s map published around the mid of 19th century, the first geological map of a large active volcano, and the ROMANO et alii (1979) map published about a century later, both at 1:50,000 scale. Lithostratigraphy was used for mapping volcanic units and then Unconformity Bounded Units were applied to group lithostratigraphic units into synthems. In addition, lithosomes were exploited to better represent the spatial localization of different eruptive centres according to their morphology. On the whole, we identified 27 lithostratigraphic units, grouped into 8 synthems, and 9 volcanoes. In detail, effusive and explosive deposits generated by each eruption of Mongibello and, partially, Ellittico volcanoes were mapped as flow rank. This stratigraphic framework represents the best synthesis of the geological evolution of Etna volcano using the main unconformities recognized within its complex volcanic succession. In addition, we constrain the Etna volcanic succession and its lithostratigraphic units chronologically by radioisotope age determinations. On the basis of the outlined synthemic units, it was possible to divide Etna’s volcanic succession into 4 supersynthems, which correspond to 4 well-defined and spatially localized phases. The detailed reconstruction of the past eruptive activity allowed compiling the most accurate dataset in particular of the Holocene eruptions of Etna volcano, which will enable significantly improving the volcanic hazard assessment, together with petrological interpretation of erupted magmas and geophysical modelling of the volcano plumbing system.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Branca_2011-Carta_Etna.pdf2.66 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations 20

168
checked on Feb 10, 2021

Page view(s) 20

303
checked on Apr 24, 2024

Download(s) 50

159
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric