Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6429
DC FieldValueLanguage
dc.contributor.authorallMourik, A. A.; Stratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallBijkerk, J. F.; Stratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallCascella, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallHüsing, S. K.; Paleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallHilgen, F. J.; Stratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallLourens, L. J.; Stratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallTurco, E.; Dip. di Scienze della Terra, Universita di Parma, Parco Area della Scienze 157/A, 16 43100 Parma, Italyen
dc.date.accessioned2010-12-21T07:31:59Zen
dc.date.available2010-12-21T07:31:59Zen
dc.date.issued2010-08-15en
dc.identifier.urihttp://hdl.handle.net/2122/6429en
dc.description.abstractContinuous marine successions covering the Middle Miocene Climate Transition (MMCT; ∼15–13.7 Ma) are scarce and the lack of a high-resolution magnetobiostratigraphic framework hampers the construction of astronomically tuned age models for this time interval. The La Vedova High Cliff section, exposed along the coast of the Cònero Riviera near Ancona (Italy), is one of the few Mediterranean sections covering the critical time interval of the MMCT. Starting from an initial magnetobiostratigraphic age model, a robust astronomical tuning was constructed for the interval between 14.2 and 13.5 Ma, using geochemical element data and time series analysis. A shift in δ18O of bulk sediment towards heavier values occurs between ∼13.92 and 13.78 Ma and could be related to the Mi3b oxygen isotope event, which reflects the rapid expansion of the East Antarctic Ice Sheet in the middle Miocene. The onset of the CM6 carbon excursion is reflected in the bulk record by a rapid increase in δ13C at 13.86 Ma. Our results confirm the proposition that these events coincide with a 405-kyr minimum in eccentricity and a node in obliquity related to the ∼1.2 Myr cycle. From 13.8 Ma onwards, distinct quadruplet cycles containing sapropelitic sediments were deposited. This may suggest a causal connection between the main middle Miocene cooling step and the onset of sapropel formation in the Mediterranean.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1-2 / 297 (2010)en
dc.subjectMiddle Mioceneen
dc.subjectMediterraneanen
dc.subjectastronomical tuningen
dc.subjectpaleomagnetismen
dc.subjectbiostratigraphyen
dc.subjectenvironmental changesen
dc.subjectorbital forcingen
dc.subjectsapropelsen
dc.titleAstronomical tuning of the La Vedova High Cliff section (Ancona, Italy)—Implications of the Middle Miocene Climate Transition for Mediterranean sapropel formationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber249–261en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.epsl.2010.06.026en
dc.relation.referencesAbels, H.A., 2008. Long-period orbital climate forcing—cyclostratigraphic studies of Cenozoic continental and marine successions in Europe. : Geologica Ultraiectina, 297. Utrecht University, Utrecht. 178 pp. Abels, H.A., Hilgen, F.J., Krijgsman, W., Kruk, R.W., Raffi, I., Turco, E., Zachariasse, W.J., 2005. Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20 (PA4012)10.1029/2004PA001129. Billups, K., Pälike, H., Channell, J.E.T., Zachos, J.C., Shackleton, N.J., 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth and Planetary Science Letters 224, 33–44. Bown, P.R., 1998. Calcareous nannofossil biostratigraphy. : British Micropalaeontological Society Publication SeriesChapman and Hall, Cambridge. 314 pp. Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57. De Visser, J.P., 1991. Clay mineral stratigraphy of Miocene to recent marine sediments in the Central Mediterranean. : Geologica Ultraiectina, 75. Utrecht University, Utrecht. 244 pp. Di Stefano, A., Foresi, L.M., Lirer, F., Iaccarino, S.M., Turco, E., Amore, F.O., Mazzei, R., Morabito, S., Salvatorini, G., Abdul Aziz, H., 2008. Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area. Riv. Ital. Paleontol. Stratigr. 114, 51–76. Egli, R., 2004a. Characterization of individual rock magnetic components by analysis of remanence curves, 1. unmixing natural sediments. Stud. Geophys. Geod. 48, 391–446. Egli, R., 2004b. Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth 29, 851–867. Ellwood, B.B., Crick, R.E., El Hassani, A., Benoist, S.L., Young, R.H., 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks; detrital input versus carbonate productivity. Geology 28, 1135–1138. Hammer, Ø., Harper, D., 2005. Paleontological Data Analysis. Blackwell Publishing, Oxford, UK. 368 pp. Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167. Hay, W.W., 1996. Tectonics and climate. Geol. Rundsch. 85, 409–437. Hay, W.W., 1998. Detrital sediment fluxes from continents to oceans. Chem. Geol. 145, 287–323. Heslop, D., McIntosh, G., Dekkers, M.J., 2004. Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int. 157, 55–63. Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J., Santarelli, A., Zachariasse, W.J., 1995. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510. Hilgen, F.J., Aziz, H.A., Krijgsman, W., Raffi, I., Turco, E., 2003. Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle–Upper Miocene, northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 229–264. Hilgen, F.J., Abels, H.A., Iaccarino, S., Krijgsman, W., Raffi, I., Sprovieri, R., Turco, E., Zachariasse, W.J., 2009. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene). Episodes 32, 152–166. Holbourn, A., Kuhnt, W., Schulz, M., Erlenkeuser, H., 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487. Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.A., Andersen, N., 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534–550. Hüsing, S.K., H., F.J., Abdul Aziz, H., Krijgsman, W., 2007. Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth Planet. Sci. Lett. 253, 340–358. Hüsing, S.K., Dekkers,M.J., Franke, C., Krijgsman,W., 2009. The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigitebearing sediments. Geophys. J. Int. 179, 125–14310.1111/j.1365-246X.2009.04301.x. Hüsing, S.K., Hilgen, F.J., Kuiper, K.F., Krijgsman, W., Turco, E., Cascella, A., Wilson, D., 2010. Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma. Earth Planet. Sci. Lett. 290, 254–269. Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W.,Duce, R.A.,Hunter, K.A., Kawahata,H.,Kubilay,N., laRoche, J., Liss, P.S.,Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71. John, C.M., Mutti, M., Adatte, T., 2003. Mixed carbonate-siliciclastic record on the North African margin (Malta)—coupling of weathering processes and mid Miocene climate. Geol. Soc. Am. Bull. 115, 217–229. Kender, S., Peck, V.L., Jones, R.W., Kaminski, M.A., 2009. Middle Miocene oxygen minimum zone expansion offshore West Africa; evidence for global cooling precursor events. Geology 37, 699–702. Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189, 269–276. Laskar, J., Joutel, F., Boudin, F., 1993. Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astron. Astrophys. 270, 522–533. Lourens, L.J., Antonarakou, A., Hilgen, F.J., Van Hoof, A.A.M., Vergnaud-Grazzini, C., Zachariasse, W.J., 1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413. Lourens, L.J., Wehausen, R., Brumsack, H.J., 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409, 1029–1033. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N., Wilson, D., 2004. The Neogene period. In: Gradstein, F., Ogg, J., Smith, A.G. (Eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge, UK, pp. 409–440. Miller, K.G., Wright, J.D., Fairbanks, R.G., 1991. Unlocking the ice house—Oligocene– Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96 (B4), 6829–6848. Miller, K.G., Mountain, G.S., Members of the Shipboard Party, 1996. Drilling and dating New Jersey Oligocene–Miocene sequences: ice volume, global sea level, and Exxon records. Science 271, 1092–1095. Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christie-Blick, N., Katz, M.E., Wright, J.D., 1998. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Revs. Geophys. 36, 569–601. Montanari, A., Beaudoin, B., Chan, L.S., Coccioni, R., Deino, A., DePaolo, D.J., Emmanuel, L., Fornaciari, E., Kruge, M., Lundblad, S., Mozzato, C., Portier, E., Renard, M., Rio, D., Sandroni, P., Stankiewicz, A., 1997. Integrated stratigraphy of the Middle to Upper Miocene pelagic sequence of the Conero Riviera (Marche Region, Italy). In: Montanari, A., Odin, G.S., Coccioni, R. (Eds.), Miocene Stratigraphy: An Integrated Approach. Dev, Paleontol. Stratigr., 15. Elsevier, Amsterdam, pp. 409–450. Nijenhuis, I.A., Schenau, S.J., VanderWeijden, C.H., Hilgen, F.J., Lourens, L.J., Zachariasse, W.J., 1996. On the origin of upper Miocene sapropelites: a case study from the Faneromeni section, Crete (Greece). Paleoceanography 11, 633–645. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Trans. AGU (EOS) 77, 379. Pälike, H., Frazier, J., Zachos, J.C., 2006. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quat. Sci. Rev. 25, 3138–3149. Poulton, S.W., Raiswell, R., 2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137.Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett. 134, 227–236. Russo, B., Curcio, E., Iaccarino, S., 2007. Paleoecology and paleoceanography of a Langhian succession (Tremiti Islands, southern Adriatic Sea, Italy) based on benthic foraminifera. Boll. Soc. Paleontol. Ital. 46, 107–124. Schenau, S.J., Antonarakou, A., Hilgen, F.J., Lourens, L.J., Nijenhuis, I.A., van der Weijden, C.H., Zachariasse, W.J., 1999. Organic-rich layers in the Metochia section (Gavdos, Greece): evidence for a single mechanism of sapropel formation during the past 10 My. Mar. Geol. 153, 117–135. Sprovieri, R., Bonomo, S., Caruso, A., Di Stefano, A., Di Stefano, E., Foresi, L.M., Iaccarino, S.M., Lirer, F., Mazzei, R., Salvatorini, G., 2002. An integrated calcareous plankton biostratigraphic scheme and biochronology for the Mediterranean Middle Miocene. Riv. Ital. Paleontol. Stratigr. 108, 337–353. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12–32. Tuenter, E., Weber, S.L., Hilgen, F.J., Lourens, L.J., 2003. The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Global Planet. Change 36, 219–235. Turco, E., Hilgen, F.J., Lourens, L.J., Shackleton, N.J., Zachariasse, W.J., 2001. Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography 16, 405–423. Van der Zwaan, G.J., Gudjonsson, L., 1986. Middle Miocene-Pliocene stable isotope stratigraphy and paleoceanography of the Mediterranean. Marine Micropaleontology 10, 71–90. Vasiliev, I., Franke, C., Meeldijk, J.D., Dekkers, M.J., Langereis, C.G., Krijgsman, W., 2008. Putative greigite magnetofossils from the Pliocene epoch. Nat. Geosci. 1, 782–786. Wehausen, R., Brumsack, H.J., 1999. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation. Mar. Geol. 153, 161–176. Wehausen, R., Brumsack, H.J., 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr., Palaeoclimatol., Palaeoecol. 158, 325–352. Woodruff, F., Savin, S.M., 1989. Miocene deepwater oceanography. Paleoceanography 4, 87–140. Woodruff, F., Savin, S.M., 1991. Mid-Miocene isotope stratigraphy in the deep sea : high-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6, 755–806. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693. Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., Pälike, H., Flower, B.P., 2001b. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMourik, A. A.en
dc.contributor.authorBijkerk, J. F.en
dc.contributor.authorCascella, A.en
dc.contributor.authorHüsing, S. K.en
dc.contributor.authorHilgen, F. J.en
dc.contributor.authorLourens, L. J.en
dc.contributor.authorTurco, E.en
dc.contributor.departmentStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentDip. di Scienze della Terra, Universita di Parma, Parco Area della Scienze 157/A, 16 43100 Parma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands-
crisitem.author.deptStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands-
crisitem.author.deptDipartimento di Fisica e Scienze della Terra, Università di Parma-
crisitem.author.deptPaleomagnetic Laboratory ‚Fort Hoofddijk-
crisitem.author.deptDepartment of Earth Sciences, Utrecht University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-8255-3244-
crisitem.author.orcid0000-0002-3815-7770-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mouriketal2010b.pdf2.43 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

31
checked on Feb 10, 2021

Page view(s) 50

193
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric