Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6344
DC FieldValueLanguage
dc.contributor.authorallLiotta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCaracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMartelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallRizzo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2010-12-14T11:48:39Zen
dc.date.available2010-12-14T11:48:39Zen
dc.date.issued2010-11-02en
dc.identifier.urihttp://hdl.handle.net/2122/6344en
dc.description.abstractWe investigated the geochemistry of the fumaroles at the summit area of Mt. Etna, including sulfur speciation and the content of acidic gases. The carbon-isotope composition of the Etnean plume was also measured in order to compare it to that of fumaroles. Two types of fumaroles were identified: (i) low-temperature fumaroles, which are dominated by CO2 with minor amounts of SO2 and H2S, and negligible chlorine contents, and (ii) high-temperature fumaroles, which are strongly air-contaminated and characterized by appreciable amounts of volcanogenic carbon, sulfur, and chlorine. As recognized by Martelli et al. (2008), both groups of fumaroles are fed by the degassing of an underlying magma; nevertheless, compositional data clearly show that secondary processes affect the composition of the fluids once they leave the magma body. Here a model of cooling and condensation of fluids is proposed to explore such postmagmatic processes. The model, which uses Etnean plume geochemistry as starting composition of fluids exsolved from magma, shows that SO2 and H2S control the redox conditions of the gas mixture during the cooling, until the reactions involving CO/CO2 and H2/H2O ratios are fully quenched at temperatures around 350–450 °C. The dissolution of gases in water, subsequent to condensation, must occur at thermobaric conditions over 50 bar and 260 °C, which allows (a) total removal of HCl, (b) partial removal of sulfur species while preserving the SO2/H2S ratio, and (c) the C/S ratio to increase by almost 10-fold relative to that in the plume. The observed CH4/CO2 ratios are higher than those calculated for the Etnean magmatic gas, and hence they provide evidence of modest contributions from peripheral hydrothermal fluids during the migration of magmatic gases toward the surface in both low- and high-temperature fumaroles. Due to the peculiar thermodynamic conditions, the model predicts that carbon isotopes do not experience any postmagmatic fractionation, and hence the isotopic composition of the fumaroles is representative of magmatic carbon. Measurements of the carbon-isotope composition of the plume corroborate these findings.en
dc.language.isoEnglishen
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/278(2010)en
dc.subjectFumaroles Volcanic gases Mt. Etna Geothermometryen
dc.titleHydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber92-104en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.chemgeo.2010.09.004en
dc.relation.referencesAiuppa, A., Inguaggiato, S., McGonigle, A.J.S., O'Dwyer, M., Oppenheimer, C., Padgett, M.J., Rouwet, D., Valenza, M., 2005.H2S fluxes fromMt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes.Geochimica et Cosmochimica Acta 69, 1861–1871. Aiuppa, A., Franco, A., von Glasow, R., Allen, A.G., D'Alessandro,W., Mather, T.A., Pyle, D.M., Valenza, M., 2007. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations. Atmospheric Chemistry and Physics 7, 1441–1450. Allard, P., Carbonnelle, J.M., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Peirret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffusive emissions of CO2 from Mount Etna. Nature 351, 387–391. Allard, P., Jean-Baptiste, P., D'Alessandro, W., Parello, F., Parisi, B., Flehoc, C., 1997. Mantle derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth and Planetary Science Letters 148, 501–516. Allard, P., Behncke, B., D'Amico, A., Neri, M., Gambino, S., 2006. Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Science Reviews 78, 85–114. Brombach, T., Caliro, S., Chiodini, G., Fiebig, J., Hunziker, J.C., Raco, B., 2003. Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bulletin of Volcanology 65, 505–516. Caracausi, A., Italiano, F., Nuccio, P.M., Paonita, A., Rizzo, A., 2003. Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mt. Etna (Italy): assessment of the magmatic reservoir pressure. Journal of Geophysical Research 108, 2463–2484. Caracausi, A., Ditta, M., Italiano, F., Longo, M., Nuccio, P.M., Paonita, A., Rizzo, A., 2005. Changes in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: the recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy). Geochimica et Cosmochimica Acta 69, 3045–3059. Chiodini, G., 2009. CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes. Geophysical Research Letters 36, L02302. doi:10.1029/2008GL036347. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochimica et Cosmochimica Acta 62, 2673–2687. Chiodini, G., Cioni, R., Marini, L., 1993. Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Applied Geochemistry 8, 357–371. Chiodini, G., D'Alessandro, W., Parello, F., 1996. Geochemistry of gases and waters discharged by themud volcanoes at Paternò,Mt. Etna (Italy). Bulletin of Volcanology 58, 51–58. Chiodini, G., Marini, L., Russo, M., 2001. Geochemical evidence for the existence of hightemperature hydrothermal brines at Vesuvio volcano, Italy. Geochimica et Cosmochimica Acta 65, 2129–2147. D'Amore, F., Panichi, C., 1980. Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochimica et Cosmochimica Acta 44, 549–556. D'Alessandro, W., Giammanco, S., Parello, F., Valenza, M., 1997. CO2 output and δ13C (CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bulletin of Volcanology 58, 455–458. Delmelle, P., Bernarda, A., Kusakabe, M., Fischer, T.P., Takano, B., 2000. Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. Journal of Volcanology and Geothermal Research 97, 31–53. Fiebig, J., Chiodini,G., Caliro, S., Rizzo, A., Spangenberg, J.,Hunziker, J.C., 2004. Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic hydrothermal systems. Geochimica et Cosmochimica Acta 68, 2321–2334. Fischer, T.P., Sturchio, N.C., Stix, J., Arehart, G.B., Counce, D., Williams, S.N., 1997. The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. Journal of Volcanology and Geothermal Research 77, 229–253. Fournier, R.O., 2006.Hydrothermal systems and volcano geochemistry. In:Dzurisin, D. (Ed.), Volcano Deformation—GeodeticMonitoring Techniques. Springer, Berlin, pp. 323–341. Garofalo, K., Tassi, F., Vaselli, O., Delgado-Huertas, A., Tedesco, D., Frische, M., Hansteen, T.H., Poreda, R.J., Strauch, W., 2007. Fumarolic gases at Mombacho volcano (Nicaragua): presence of magmatic gas species and implications for volcanic surveillance. Bulletin of Volcanology 69, 785–795. Gerlach, T.M., 1979. Evaluation and restoration of the 1970 volcanic gas analyses from Mount Etna, Sicily. Journal of Volcanology and Geothermal Research 6, 165–178. Giammanco, S., Inguaggiato, S., Valenza, M., 1998. Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. Journal of Volcanology and Geothermal Research 81, 297–310. Giammanco, S., Sims, K.W.W., Neri, M., 2007. Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases onMt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochemistry, Geophysics, Geosystems 8, Q10001. doi:10.1029/2007GC001644. Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas samples. Bulletin of Volcanology 39, 132–145. Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry 2, 143–161. Giggenbach,W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, pp. 221–256. Giggenbach, W.F., 1997. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heat-flow sedimentary basins. Geochimica et Cosmochimica Acta 61, 3763–3785. Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527. doi:10.1038/370519a0. HSC, 2006. HSC Chemistry for Windows, version 6. Outokumpu Research Oy, Pori, Finland. Huntingdon, A.T., 1973. The collection and analysis of volcanic gases from Mount Etna. Philosophical Transaction of the Royal Society, London, A 274, 119–128. Johnson, J.M., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 08 to 10008C. Computers & Geosciences 18, 899–947. Martelli, M., Caracausi, A., Paonita, A., Rizzo, A., 2008. Geochemical variations of air-free crater fumaroles at Mt Etna: new inferences for forecasting shallow volcanic activity. Geophysical Research Letters 35, L21302. doi:10.1029/2008GL035118. Métrich, N., Clocchiatti, R., 1996. Sulfur abundance and its speciation in oxidized alkaline melts. Geochimica et Cosmochimica Acta 60, 4151–4160. Neri, M., Acocella, V., 2006. The 2004–05 Etna eruption: implications for flank deformation and structural behaviour of the volcano. Journal of Volcanology and Geothermal Research 158, 195–206. Neri, M., Acocella, V., Behncke, B., 2004. The role of the Pernicana Fault System in the spreading of Mount Etna (Italy) during the 2002–2003 eruption. Bulletin of Volcanology 66, 417–430. Neri, M., Mazzarini, F., Tarquini, S., Bisson, B., Isola, I., Behncke, B., Pareschi, M.T., 2008. The changing face of Mount Etna's summit area documented with Lidar technology. Geophysical Research Letters 35, L09305. doi:10.1029/2008GL033740. Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. : second edition. John Wiley & Sons Inc., New York, pp. 509–567. Paonita, A., Favara, R., Nuccio, P.M., Sortino, F., 2002. Genesis of fumarolic emissions as inferred by isotopic mass balances: CO2 andwater at Vulcano Island, Italy. Geochimica et Cosmochimica Acta 66, 759–772. Pecoraino, G., Giammanco, S., 2005. Geochemical characterization and temporal changes in parietal gas emissions at Mt. Etna (Italy) during the period July 2000– July 2003. Terrestrial, Atmospheric and Oceanic Sciences 16, 805–841. Polacci, M., Burton, M.R., La Spina, A., Mure, F., Favretto, S., Zanini, F., 2009. The role of syneruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy. Journal of Volcanology and Geothermal Research 179, 265–269. doi:10.1016/j.jvolgeores. 2008.11.026. Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), 2002. Noble Gases in Geochemistry and Cosmochemistry. Geochemical Society and Mineralogical Society of America. Rouwet, D., Inguaggiato, S., Taran, Y., Varley, N., Santiago, J.A., 2009. Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico–Guatemala): implications for volcanic surveillance. Bulletin of Volcanology 71, 319–335. Shinohara,H., Aiuppa, A., Giudice,G., Gurrieri, S., Liuzzo,M., 2008. Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy. Journal of Geophysical Research 113, B09203. doi:10.1029/2007JB005185. Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total sulfur in fumarolic fluids by ion chromatography. Acta Vulcanologica 1, 89–91.Symonds, R.B., Gerlach, T.M., Reed, M.H., 2001. Magmatic gas scrubbing: implications for volcano monitoring. Journal of Volcanology and Geothermal Research 108, 303–341. Taran, Y.A., 1986. Gas geothermometers for hydrothermal systems. Geochemistry International 3, 327–341. Taran, Y.A., Giggenbach, W.F., 2003. Geochemistry of light hydrocarbons in volcanic and hydrothermal fluids. Society of Economic Geologists, Special Publication 10, 61–74. Taran, Y.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., 1995. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kurile Islands. Geochimica et Cosmochimica Acta 59, 1749–1761. Taran, Y.A., Connor, C.B., Shapar, V.N., Ovsyannikov, A.A., Bilichenko, A.A., 1997. Fumarolic activity of Avachinsky and Koryaksky volcanoes, Kamchatka, from 1993 to 1994. Bulletin of Volcanology 58, 441–448. Tassi, F., Vaselli, O., Capaccioni, B., Nencetti, A., Montegrossi, G., Macias, J.L., Magro, G., 2003. Chemical composition of fumarolic gases and spring discharges from El Chichon volcano, Chiapas, Mexico: causes and implications of the changes detected over the period 1998–2000. Journal of Volcanology and Geothermal Research 123, 105–121. Tassi, F., Aguilera, F., Vaselli, O., Medina, E., Tedesco, D., Delgado Huertas, A., Poreda, R., Kojima, S., 2009. The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile. Bulletin of Volcanology 71, 171–183.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLiotta, M.en
dc.contributor.authorPaonita, A.en
dc.contributor.authorCaracausi, A.en
dc.contributor.authorMartelli, M.en
dc.contributor.authorRizzo, A.en
dc.contributor.authorFavara, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0002-7203-1565-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.orcid0000-0003-2510-2890-
crisitem.author.orcid0000-0001-8525-1754-
crisitem.author.orcid0000-0003-2225-3781-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Liotta et al 2010.pdfMain article1.43 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

32
checked on Feb 10, 2021

Page view(s) 50

227
checked on Apr 24, 2024

Download(s)

39
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric