Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6341

Authors: Bonaccorso, A.*
Bonforte, A.*
Gambino, S.*
Title: Thermal expansion-contraction and slope instability of a fumarole field inferred from geodetic measurements at Vulcano
Title of journal: Bulletin of Volcanology
Series/Report no.: 7/72 (2010)
Publisher: Springer-Verlag
Issue Date: Sep-2010
DOI: 10.1007/s00445-010-0366-7
Keywords: Volcano monitoring
Ground deformation
slope instability
thermo-elastic deformation
Abstract: Between 1987 and 1993, fumarole temperatures at the Fossa crater of Vulcano (Italy) were characterized by the highest values since the 1920’s, increasing from about 300°C in 1987 to 690°C in May 1993, before decreasing to 400°C by 1996–1997. During 1990, Vulcano’s Electronic Distance Measurement (EDM) network was expanded to provide more detailed coverage of the northern sector of the Fossa crater and, in particular, to monitor the movement of the northern flank the Fossa cone. Measurements, carried out between 1990 and 1994, showed shortening by about 6 to 7 cm along baselines measured to a small section of the northern rim. Over the following four years these baselines showed a slow extension by about 3 cm, to gradually recover part of the previous deformation. We believe that the shortening and lengthening of the EDM baselines was respectively due to the increasing and decreasing temperature of the rock body lying close to the deforming area. This caused thermal expansion, followed by contraction. The positive movement of the rim was not completely matched by a negative recovery, suggesting that a nonrecoverable sliding movement was also responsible for some of the shortening of the baselines. We verified our hypothesis by calculating the expected dilatation of a rock body, as a function of the volume of rock heated and its thermal expansion coefficient, and compared the expected deformation to that observed. The geodetic investigation showed that the unstable portion affects a small length of the rim (about 100 m long) and involves a volume of about 0.8×106 m3. However, this zone lies directly above a particularly unstable portion of the flank, as well as the main village and port on the island.
Appears in Collections:04.08.06. Volcano monitoring
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Bonaccorso_et_al_BV_2010-Forgia.pdf885.98 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA