Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6062
DC FieldValueLanguage
dc.contributor.authorallMatoza, R. S.; Laboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.authorallGarcés, M. A.; Infrasound Laboratory, Hawai’i Institute of Geophysics andPlanetology, University of Hawai’i at Manoaen
dc.contributor.authorallChouet, B. A.; U.S. Geological Survey, Menlo Park, Californiaen
dc.contributor.authorallD'Auria, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallHedlin, M. A. H.; Laboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.authorallDe Groot-Hedlin, E.; Laboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.authorallWaite, G. P.; U.S. Geological Survey, Menlo Park, Californiaen
dc.date.accessioned2010-06-30T07:39:49Zen
dc.date.available2010-06-30T07:39:49Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/6062en
dc.description.abstractDuring the early stages of the 2004–2008 Mount St. Helens eruption, the source process that produced a sustained sequence of repetitive long-period (LP) seismic events also produced impulsive broadband infrasonic signals in the atmosphere. To assess whether the signals could be generated simply by seismic-acoustic coupling from the shallow LP events, we perform finite difference simulation of the seismo-acoustic wavefield using a single numerical scheme for the elastic ground and atmosphere. The effects of topography, velocity structure, wind, and source configuration are considered. The simulations show that a shallow source buried in a homogeneous elastic solid produces a complex wave train in the atmosphere consisting of P/SV and Rayleigh wave energy converted locally along the propagation path, and acoustic energy originating from the source epicenter. Although the horizontal acoustic velocity of the latter is consistent with our data, the modeled amplitude ratios of pressure to vertical seismic velocity are too low in comparison with observations, and the characteristic differences in seismic and acoustic waveforms and spectra cannot be reproduced from a common point source. The observations therefore require a more complex source process in which the infrasonic signals are a record of only the broadband pressure excitation mechanism of the seismic LP events. The observations and numerical results can be explained by a model involving the repeated rapid pressure loss from a hydrothermal crack by venting into a shallow layer of loosely consolidated, highly permeable material. Heating by magmatic activity causes pressure to rise, periodically reaching the pressure threshold for rupture of the ‘‘valve’’ sealing the crack. Sudden opening of the valve generates the broadband infrasonic signal and simultaneously triggers the collapse of the crack, initiating resonance of the remaining fluid. Subtle waveform and amplitude variability of the infrasonic signals as recorded at an array 13.4 km to the NW of the volcano are attributed primarily to atmospheric boundary layer propagation effects, superimposed upon amplitude changes at the source.en
dc.language.isoEnglishen
dc.publisher.nameAMER GEOPHYSICAL UNIONen
dc.relation.ispartofJOURNAL OF GEOPHYSICAL RESEARCHen
dc.relation.ispartofseries/114(2009)en
dc.subjectinfrasounden
dc.subjecteventsen
dc.titleThe source of infrasound associated with long-period events at Mounten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB04305en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2008JB006128en
dc.relation.referencesBass, H. E. (1991), Atmospheric acoustics, in Encyclopedia of Applied Physics, vol. 2, pp. 145– 179, VCH, New York. Bass, H. E., L. N. Bolen, D. Cress, J. Lundien, and M. Flohr (1980), Coupling of airborne sound into the Earth: Frequency dependence, J. Acoust. Soc. Am., 67, 1502–1506, doi:10.1121/1.384312. Bedrosian, P. A., M. J. Unsworth, and M. J. S. Johnston (2007), Hydrothermal circulation at Mount St. Helens determined by self-potential measurements, J. Volcanol. Geotherm. Res., 160, 137– 146, doi:10.1016/ j.jvolgeores.2006.09.003. Bedrosian, P. A., M. Burgess, and A. Hotovec (2008), Groundwater Hydrology within the crater of Mount St. Helens from geophysical constraints, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract V43E-2191. Benioff, H., M. Ewing, and F. Press (1951), Sound waves in the atmosphere generated by a small earthquake, Proc. Natl. Acad. Sci. U. S. A., 37, 600– 603. Benz, H. M., B. A. Chouet, P. B. Dawson, J. C. Lahr, R. A. Page, and J. A. Hole (1996), Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111 – 8128, doi:10.1029/ 95JB03046. Berenger, J. P. (1996), Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127, 363– 379, doi:10.1006/jcph.1996.0181. Bolt, B. A. (1964), Seismic air waves from the great 1964 Alaskan earthquake, Nature, 202, 1095–1096, doi:10.1038/2021095a0. Brekhovskikh, L. M. (1980), Waves in Layered Media, 2nd ed., Academic, New York. Cansi, Y. (1995), An automatic seismic event processing for detection and location: The P. M. C. C. method, Geophys. Res. Lett., 22, 1021– 1024, doi:10.1029/95GL00468. Caplan-Auerbach, J., and T. Petersen (2005), Repeating coupled earthquakes at Shishaldin Volcano, Alaska, J. Volcanol. Geotherm. Res., 145, 151– 172, doi:10.1016/j.jvolgeores.2005.01.011. Cashman, K. V., C. R. Thornber, and J. S. Pallister (2009), From dome to dust: Shallow crystallization and fragmentation of conduit magma during the 2004– 2006 dome extrusion at Mount St. Helens, Washington, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004– 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Chouet, B. (1985), Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor, J. Geophys. Res., 90, 1881– 1893, doi:10.1029/ JB090iB02p01881. Chouet, B. (1986), Dynamics of a fluid-driven crack in three dimensions by the finite-difference method, J. Geophys. Res., 91, 13,967 – 13,992, doi:10.1029/JB091iB14p13967. Chouet, B. (1988), Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor, J. Geophys. Res., 93, 4375–4400, doi:10.1029/JB093iB05p04375. Chouet, B. (1992), A seismic model for the source of long-period events and harmonic tremor, in Volcanic Seismology, edited by P. Gasparini, R. Scarpa, and K. Aki, IAVCEI Proc. Volcanol., 3, 133– 156. Chouet, B. A. (1996a), Long-period volcano seismicity: Its source and use in eruption forecasting, Nature, 380, 309– 316, doi:10.1038/380309a0. Chouet, B. A. (1996b), New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, edited by R. Scarpa and R. Tilling, pp. 23–97, Springer, New York. Chouet, B. (2003), Volcano seismology, Pure Appl. Geophys., 160, 739– 788, doi:10.1007/PL00012556. Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De Luca, G. Milana, and R. Scarpa (2003), Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data, J. Geophys. Res., 108(B1), 2019, doi:10.1029/2002JB001919. Chouet, B., P. Dawson, and A. Arciniega-Ceballos (2005), Source mechanism of Vulcanian degassing at Popocate´petl Volcano, Mexico, determined from waveform inversions of very long period signals, J. Geophys. Res., 110, B07301, doi:10.1029/2004JB003524. D’Auria, L., and M. Martini (2007), 3-D finite difference modeling of the seismo-acoustic wave field, Seismol. Res. Lett., 59(2), 245. DeFatta, D. J., J. G. Lucas, and W. S. Hodgkiss (1988), Digital Signal Processing: A System Design Approach, John Wiley, New York. de Groot-Hedlin, C. (2004), Criteria for discretization of seafloor bathymetry when using a stairstep approximation: Application to computation of T-phase seismograms, J. Acoust. Soc. Am., 115, 1103–1113, doi:10.1121/ 1.1643361. Drob, D. P., J. M. Picone, and M. Garce´s (2003), Global morphology of infrasound propagation, J. Geophys. Res., 108(D21), 4680, doi:10.1029/ 2002JD003307. Embleton, T. F. W. (1996), Tutorial on sound propagation outdoors, J. Acoust. Soc. Am., 100, 31– 48, doi:10.1121/1.415879. Fee, D., and M. Garce´s (2007), Infrasonic tremor in the diffraction zone, Geophys. Res. Lett., 34, L16826, doi:10.1029/2007GL030616. Ferrazzini, V., and K. Aki (1987), Slow waves trapped in a fluid-filled infinite crack: Implication for volcanic tremor, J. Geophys. Res., 92, 9215– 9223, doi:10.1029/JB092iB09p09215. Festa, G., and S. Nielsen (2003), PML absorbing boundaries, Bull. Seismol. Soc. Am., 93, 891–903, doi:10.1785/0120020098. Garce´s, M. (1997), On the volcanic waveguide, J. Geophys. Res., 102, 22,547– 22,564, doi:10.1029/97JB01799. Garce´s, M. A., R. A. Hansen, and K. G. Lindquist (1998), Traveltimes for infrasonic waves propagating in a stratified atmosphere, Geophys. J. Int., 135, 255–263, doi:10.1046/j.1365-246X.1998.00618.x. Garce´s, M., M. Iguchi, K. Ishihara, M. Morrissey, Y. Sudo, and T. Tsutsui (1999), Infrasonic precursors to a Vulcanian eruption at Sakurajima Volcano, Japan, Geophys. Res. Lett., 26, 2537 – 2540, doi:10.1029/ 1998GL005327. Garce´s, M., D. Fee, D. McCormack, R. Servranckx, H. Bass, C. Hetzer, M. Hedlin, R. Matoza, and H. Yepes (2008), Prototype ASHE volcano monitoring system captures the acoustic fingerprint of stratospheric ash injection, Eos Trans. AGU, 89, 377. Gerlach, T. M., K. A. McGee, and M. P. Doukas (2009), Emission rates of CO2, SO2, and H2S, scrubbing, and preeruption excess volatiles at Mount St. Helens, 2004– 2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004 – 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Gil Cruz, F., and B. A. Chouet (1997), Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991, J. Volcanol. Geotherm. Res., 77, 121– 158, doi:10.1016/S0377-0273(96)00091-1. Graves, R. W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-differences, Bull. Seismol. Soc. Am., 86, 1091–1106. Green, D. N., and J. Neuberg (2006), Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufriere Hills Volcano,Montserrat, J. Volcanol.Geotherm. Res., 153, 51–63, doi:10.1016/ j.jvolgeores.2005.08.003. Harrington, R. M., and E. E. Brodsky (2007), Volcanic hybrid earthquakes that are brittle-failure events, Geophys. Res. Lett., 34, L06308, doi:10.1029/ 2006GL028714. Hedlin, M. A. H., B. Alcoverro, and G. D’Spain (2003), Evaluation of rosette infrasonic noise-reducing spatial filters, J. Acoust. Soc. Am., 114, 1807–1820, doi:10.1121/1.1603763. Hickey, C. J., and J. M. Sabatier (1997), Measurements of two types of dilatational waves in an air-filled unconsolidated sand, J. Acoust. Soc. Am., 102, 128– 136, doi:10.1121/1.419770. Iguchi, M., and K. Ishihara (1990), Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Suwanosejima volcanoes (in Japanese), Annu. Disas. Prev. Res. Inst. Kyoto Univ., 33B-1, 1–11. Iverson, R. M., et al. (2006), Dynamics of seismogenic volcanic extrusion at Mount St. Helens in 2004–05, Nature, 444, 439– 443, doi:10.1038/ nature05322. Kitov, I. O., J. R. Murphy, O. P. Kusnetsov, B. W. Barker, and N. I. Nedoshivin (1997), An analysis of seismic and acoustic signals measured from a series of atmospheric and near-surface explosions, Bull. Seismol. Soc. Am., 87, 1553–1562. Kumagai, H., and B. A. Chouet (2000), Acoustic properties of a crack containing magmatic or hydrothermal fluids, J. Geophys. Res., 105, 25,493–25,512, doi:10.1029/2000JB900273. Kumagai, H., B. A. Chouet, and P. B. Dawson (2005), Source process of a long-period event at Kilauea volcano, Hawaii, Geophys. J. Int., 161, 243–254, doi:10.1111/j.1365-246X.2005.02502.x. Lahr, J. C., B. A. Chouet, C. D. Stephens, J. A. Power, and R. A. Page (1994), Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989 – 1990 eruptions of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 137–151, doi:10.1016/0377-0273(94)90031-0. Landau, L. D., and E. M. Lifshitz (1987), Fluid Mechanics, 2nd ed., Pergamon, New York. Larsson, C., and S. Israelsson (1991), Effects of meteorological conditions and source height on sound propagation near the ground, Appl. Acoust., 33, 109–121, doi:10.1016/0003-682X(91)90068-P. Leet, R. C. (1988), Saturated and subcooled hydrothermal boiling in groundwater-flow channels as a source of harmonic tremor, J. Geophys. Res., 93, 4835–4849, doi:10.1029/JB093iB05p04835. Leighton, T. G. (1994), The Acoustic Bubble, Academic, New York. Le Pichon, A., J. Guilbert, A. Vega, M. Garce´s, and N. Brachet (2002), Ground-coupled air waves and diffracted infrasound from the Arequipa earthquake of June 23, 2001, Geophys. Res. Lett., 29(18), 1886, doi:10.1029/2002GL015052. Le Pichon, A., J. Guilbert, M. Valle´e, J. X. Dessa, and M. Ulziibat (2003), Infrasonic imaging of the Kunlun Mountains for the great 2001 China earthquake, Geophys. Res. Lett., 30(15), 1814, doi:10.1029/2003GL017581. Le Pichon, A., P. Mialle, J. Guilbert, and J. Vergoz (2006), Multistation infrasonic observations of the Chilean earthquake of 2005 June 13, Geophys. J. Int., 167, 838–844, doi:10.1111/j.1365-246X.2006.03190.x. Lighthill, M. J. (2001), Waves in Fluids, Cambridge Univ. Press, Cambridge, U. K. Garce´s, M. A., R. A. Hansen, and K. G. Lindquist (1998), Traveltimes for infrasonic waves propagating in a stratified atmosphere, Geophys. J. Int., 135, 255–263, doi:10.1046/j.1365-246X.1998.00618.x. Garce´s, M., M. Iguchi, K. Ishihara, M. Morrissey, Y. Sudo, and T. Tsutsui (1999), Infrasonic precursors to a Vulcanian eruption at Sakurajima Volcano, Japan, Geophys. Res. Lett., 26, 2537 – 2540, doi:10.1029/ 1998GL005327. Garce´s, M., D. Fee, D. McCormack, R. Servranckx, H. Bass, C. Hetzer, M. Hedlin, R. Matoza, and H. Yepes (2008), Prototype ASHE volcano monitoring system captures the acoustic fingerprint of stratospheric ash injection, Eos Trans. AGU, 89, 377. Gerlach, T. M., K. A. McGee, and M. P. Doukas (2009), Emission rates of CO2, SO2, and H2S, scrubbing, and preeruption excess volatiles at Mount St. Helens, 2004– 2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004 – 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Gil Cruz, F., and B. A. Chouet (1997), Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991, J. Volcanol. Geotherm. Res., 77, 121– 158, doi:10.1016/S0377-0273(96)00091-1. Graves, R. W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-differences, Bull. Seismol. Soc. Am., 86, 1091–1106. Green, D. N., and J. Neuberg (2006), Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufriere Hills Volcano,Montserrat, J. Volcanol.Geotherm. Res., 153, 51–63, doi:10.1016/ j.jvolgeores.2005.08.003. Harrington, R. M., and E. E. Brodsky (2007), Volcanic hybrid earthquakes that are brittle-failure events, Geophys. Res. Lett., 34, L06308, doi:10.1029/ 2006GL028714. Hedlin, M. A. H., B. Alcoverro, and G. D’Spain (2003), Evaluation of rosette infrasonic noise-reducing spatial filters, J. Acoust. Soc. Am., 114, 1807–1820, doi:10.1121/1.1603763. Hickey, C. J., and J. M. Sabatier (1997), Measurements of two types of dilatational waves in an air-filled unconsolidated sand, J. Acoust. Soc. Am., 102, 128– 136, doi:10.1121/1.419770. Iguchi, M., and K. Ishihara (1990), Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Suwanosejima volcanoes (in Japanese), Annu. Disas. Prev. Res. Inst. Kyoto Univ., 33B-1, 1–11. Iverson, R. M., et al. (2006), Dynamics of seismogenic volcanic extrusion at Mount St. Helens in 2004–05, Nature, 444, 439– 443, doi:10.1038/ nature05322. Kitov, I. O., J. R. Murphy, O. P. Kusnetsov, B. W. Barker, and N. I. Nedoshivin (1997), An analysis of seismic and acoustic signals measured from a series of atmospheric and near-surface explosions, Bull. Seismol. Soc. Am., 87, 1553–1562. Kumagai, H., and B. A. Chouet (2000), Acoustic properties of a crack containing magmatic or hydrothermal fluids, J. Geophys. Res., 105, 25,493–25,512, doi:10.1029/2000JB900273. Kumagai, H., B. A. Chouet, and P. B. Dawson (2005), Source process of a long-period event at Kilauea volcano, Hawaii, Geophys. J. Int., 161, 243–254, doi:10.1111/j.1365-246X.2005.02502.x. Lahr, J. C., B. A. Chouet, C. D. Stephens, J. A. Power, and R. A. Page (1994), Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989 – 1990 eruptions of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 137–151, doi:10.1016/0377-0273(94)90031-0. Landau, L. D., and E. M. Lifshitz (1987), Fluid Mechanics, 2nd ed., Pergamon, New York. Larsson, C., and S. Israelsson (1991), Effects of meteorological conditions and source height on sound propagation near the ground, Appl. Acoust., 33, 109–121, doi:10.1016/0003-682X(91)90068-P. Leet, R. C. (1988), Saturated and subcooled hydrothermal boiling in groundwater-flow channels as a source of harmonic tremor, J. Geophys. Res., 93, 4835–4849, doi:10.1029/JB093iB05p04835. Leighton, T. G. (1994), The Acoustic Bubble, Academic, New York. Le Pichon, A., J. Guilbert, A. Vega, M. Garce´s, and N. Brachet (2002), Ground-coupled air waves and diffracted infrasound from the Arequipa earthquake of June 23, 2001, Geophys. Res. Lett., 29(18), 1886, doi:10.1029/2002GL015052. Le Pichon, A., J. Guilbert, M. Valle´e, J. X. Dessa, and M. Ulziibat (2003), Infrasonic imaging of the Kunlun Mountains for the great 2001 China earthquake, Geophys. Res. Lett., 30(15), 1814, doi:10.1029/2003GL017581. Le Pichon, A., P. Mialle, J. Guilbert, and J. Vergoz (2006), Multistation infrasonic observations of the Chilean earthquake of 2005 June 13, Geophys. J. Int., 167, 838–844, doi:10.1111/j.1365-246X.2006.03190.x. Lighthill, M. J. (2001), Waves in Fluids, Cambridge Univ. Press, Cambridge, U. K.Garce´s, M. A., R. A. Hansen, and K. G. Lindquist (1998), Traveltimes for infrasonic waves propagating in a stratified atmosphere, Geophys. J. Int., 135, 255–263, doi:10.1046/j.1365-246X.1998.00618.x. Garce´s, M., M. Iguchi, K. Ishihara, M. Morrissey, Y. Sudo, and T. Tsutsui (1999), Infrasonic precursors to a Vulcanian eruption at Sakurajima Volcano, Japan, Geophys. Res. Lett., 26, 2537 – 2540, doi:10.1029/ 1998GL005327. Garce´s, M., D. Fee, D. McCormack, R. Servranckx, H. Bass, C. Hetzer, M. Hedlin, R. Matoza, and H. Yepes (2008), Prototype ASHE volcano monitoring system captures the acoustic fingerprint of stratospheric ash injection, Eos Trans. AGU, 89, 377. Gerlach, T. M., K. A. McGee, and M. P. Doukas (2009), Emission rates of CO2, SO2, and H2S, scrubbing, and preeruption excess volatiles at Mount St. Helens, 2004– 2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004 – 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Gil Cruz, F., and B. A. Chouet (1997), Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991, J. Volcanol. Geotherm. Res., 77, 121– 158, doi:10.1016/S0377-0273(96)00091-1. Graves, R. W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-differences, Bull. Seismol. Soc. Am., 86, 1091–1106. Green, D. N., and J. Neuberg (2006), Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufriere Hills Volcano,Montserrat, J. Volcanol.Geotherm. Res., 153, 51–63, doi:10.1016/ j.jvolgeores.2005.08.003. Harrington, R. M., and E. E. Brodsky (2007), Volcanic hybrid earthquakes that are brittle-failure events, Geophys. Res. Lett., 34, L06308, doi:10.1029/ 2006GL028714. Hedlin, M. A. H., B. Alcoverro, and G. D’Spain (2003), Evaluation of rosette infrasonic noise-reducing spatial filters, J. Acoust. Soc. Am., 114, 1807–1820, doi:10.1121/1.1603763. Hickey, C. J., and J. M. Sabatier (1997), Measurements of two types of dilatational waves in an air-filled unconsolidated sand, J. Acoust. Soc. Am., 102, 128– 136, doi:10.1121/1.419770. Iguchi, M., and K. Ishihara (1990), Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Suwanosejima volcanoes (in Japanese), Annu. Disas. Prev. Res. Inst. Kyoto Univ., 33B-1, 1–11. Iverson, R. M., et al. (2006), Dynamics of seismogenic volcanic extrusion at Mount St. Helens in 2004–05, Nature, 444, 439– 443, doi:10.1038/ nature05322. Kitov, I. O., J. R. Murphy, O. P. Kusnetsov, B. W. Barker, and N. I. Nedoshivin (1997), An analysis of seismic and acoustic signals measured from a series of atmospheric and near-surface explosions, Bull. Seismol. Soc. Am., 87, 1553–1562. Kumagai, H., and B. A. Chouet (2000), Acoustic properties of a crack containing magmatic or hydrothermal fluids, J. Geophys. Res., 105, 25,493–25,512, doi:10.1029/2000JB900273. Kumagai, H., B. A. Chouet, and P. B. Dawson (2005), Source process of a long-period event at Kilauea volcano, Hawaii, Geophys. J. Int., 161, 243–254, doi:10.1111/j.1365-246X.2005.02502.x. Lahr, J. C., B. A. Chouet, C. D. Stephens, J. A. Power, and R. A. Page (1994), Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989 – 1990 eruptions of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 137–151, doi:10.1016/0377-0273(94)90031-0. Landau, L. D., and E. M. Lifshitz (1987), Fluid Mechanics, 2nd ed., Pergamon, New York. Larsson, C., and S. Israelsson (1991), Effects of meteorological conditions and source height on sound propagation near the ground, Appl. Acoust., 33, 109–121, doi:10.1016/0003-682X(91)90068-P. Leet, R. C. (1988), Saturated and subcooled hydrothermal boiling in groundwater-flow channels as a source of harmonic tremor, J. Geophys. Res., 93, 4835–4849, doi:10.1029/JB093iB05p04835. Leighton, T. G. (1994), The Acoustic Bubble, Academic, New York. Le Pichon, A., J. Guilbert, A. Vega, M. Garce´s, and N. Brachet (2002), Ground-coupled air waves and diffracted infrasound from the Arequipa earthquake of June 23, 2001, Geophys. Res. Lett., 29(18), 1886, doi:10.1029/2002GL015052. Le Pichon, A., J. Guilbert, M. Valle´e, J. X. Dessa, and M. Ulziibat (2003), Infrasonic imaging of the Kunlun Mountains for the great 2001 China earthquake, Geophys. Res. Lett., 30(15), 1814, doi:10.1029/2003GL017581. Le Pichon, A., P. Mialle, J. Guilbert, and J. Vergoz (2006), Multistation infrasonic observations of the Chilean earthquake of 2005 June 13, Geophys. J. Int., 167, 838–844, doi:10.1111/j.1365-246X.2006.03190.x. Lighthill, M. J. (2001), Waves in Fluids, Cambridge Univ. Press, Cambridge, U. K. Matoza, R. S., M. A. H. Hedlin, and M. A. Garce´s (2007), An infrasound array study of Mount St. Helens, J. Volcanol. Geotherm. Res., 160, 249– 262, doi:10.1016/j.jvolgeores.2006.10.006. McChesney, P. J., M. R. Couchman, S. C. Moran, A. B. Lockhart, K. J. Swinford, and R. G. La Husen (2009), Seismic monitoring changes and the remote deployment of seismic stations (Seismic Spider) at Mount St. Helens, 2004–2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004– 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. McCormack, D., H. Bass, M. Garce´s, and H. Yepes (2005), Acoustic surveillance for hazardous eruptions (ASHE), J. Acoust. Soc. Am., 117, 2419. Mikumo, T. (1968), Atmospheric pressure waves and tectonic deformation associate with the Alaskan earthquake of March 28, 1964, J. Geophys. Res., 73, 2009– 2025, doi:10.1029/JB073i006p02009. Moran, S. C., R. S.Matoza, M. A. Garce´s,M. A. H. Hedlin, D. Bowers,W. E. Scott, D. R. Sherrod, and J. W. Vallance (2008), Seismic and acoustic recordings of an unusually large rockfall atMount St. Helens,Washington, Geophys. Res. Lett., 35, L19302, doi:10.1029/2008GL035176. Moran, S. C., S. D. Malone, A. I. Qamar, W. Thelen, A. K. Wright, and J. Caplan-Auerback (2009a), 2004–2005 seismicity associated with the renewed dome-building eruption of Mount St. Helens, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004– 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Moran, S. C., P. J. McChesney, and A. B. Lockhart (2009b), Seismicity and Infrasound Associated with Explosions at Mount St. Helens, 2004– 2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004– 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Mutschlecner, J. P., and R. W. Whitaker (2005), Infrasound from earthquakes, J. Geophys. Res., 110, D01108, doi:10.1029/2004JD005067. Neuberg, J., and T. Pointer (2000), Effects of volcano topography on seismic broadband waveforms, Geophys. J. Int., 143, 239– 248, doi:10.1046/ j.1365-246x.2000.00251.x. Neuberg, J., R. Luckett, B. Baptie, and K. Olsen (2000), Models of tremor and low-frequency earthquake swarms on Montserrat, J. Volcanol. Geotherm. Res., 101, 83– 104, doi:10.1016/S0377-0273(00)00169-4. Ohminato, T. (2006), Characteristics and source modeling of broadband seismic signals associated with the hydrothermal system at Satsuma-Iwojima volcano, Japan, J. Volcanol. Geotherm. Res., 158, 467 – 490, doi:10.1016/j.jvolgeores.2006.08.004. Ohminato, T., and B. A. Chouet (1997), A free-surface boundary condition for including 3D topography in the finite-difference method, Bull. Seismol. Soc. Am., 87, 494–515. Ostashev, V. E. (1997), Acoustics in Moving Inhomogeneous Media, E & FN SPON, London. Pallister, J. S., K. V. Cashman, and J. T. Hagstrum (2008), Conduit-margin faulting at Mount St. Helens—A seismogenic process?, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract V43E-2186. Pallister, J. S., C. R. Thornber, K. V. Cashman, M. A. Clynne, H. A. Lowers, C. W. Mandeville, I. K. Brownfield, and G. P. Meeker (2009), Petrology of the 2004–2006 Mount St. Helens lava dome-implications for magmatic plumbing and eruption triggering, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004– 2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Petersen, T. (2007), Swarms of repeating long-period earthquakes at Shishaldin Volcano, Alaska, 2001– 2004, J. Volcanol. Geotherm. Res., 166, 177– 192, doi:10.1016/j.jvolgeores.2007.07.014. Petersen, T., and S. R. McNutt (2007), Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003 – 2004, Bull. Volcanol., 69, 527 – 536, doi:10.1007/s00445-006- 0088-z. Piercy, J. E., T. F. W. Embleton, and L. C. Sutherland (1977), Review of noise propagation in the atmosphere, J. Acoust. Soc. Am., 61, 1403 – 1418, doi:10.1121/1.381455. Press, F., and M. Ewing (1951), Ground roll coupling to atmospheric compressional waves, Geophysics, 16, 416– 438, doi:10.1190/1.1437684. Reynolds, O. (1873), On the refraction of sound by the atmosphere, Proc. R. Soc. London, 22, 531–548, doi:10.1098/rspl.1873.0095. Rice, J. A. (1995), Mathematical Statistics and Data Analysis, 2nd ed., Duxbury, Belmont, Calif. Riedel, K. S., and A. Sidorenko (1995), Minimum bias multiple taper spectral estimation, IEEE Trans. Signal Process., 43, 188 – 195, doi:10.1109/78.365298. Sabatier, J. M., and R. Raspet (1988), Investigation of possibility of damage from the acoustically coupled seismic waveform from blast and artillery, J. Acoust. Soc. Am., 84, 1478– 1482, doi:10.1121/1.396593. Sabatier, J. M., H. E. Bass, L. N. Bolen, and K. Attenborough (1986), Acoustically induced seismic waves, J. Acoust. Soc. Am., 80, 646 – 649, doi:10.1121/1.394058. Scheu, B., H. Kern, O. Spieler, and D. B. Dingwell (2006), Temperature dependence of elastic P- and S-wave velocities in porous Mt. Unzen dacite, J. Volcanol. Geotherm. Res., 153, 136 – 147, doi:10.1016/j.jvolgeores. 2005.08.007. Schilling, S. P., R. A. Thompson, J. A. Messerich, and E. Y. Iwatsubo (2009), Use of digital aerophotogrammetry to determine rates of lava dome growth, Mount St. Helens, 2004–2005, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004–2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Stephens, C. D., and B. A. Chouet (2001), Evolution of the December 14, 1989 precursory long-period event swarm at Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 109, 133– 148, doi:10.1016/S0377-0273(00) 00308-5. Stump, B. W. (1985), Constraints on explosive sources with spall from near-source waveforms, Bull. Seismol. Soc. Am., 75, 361– 377. Sutherland, L. C., and H. E. Bass (2004), Atmospheric absorption in the atmosphere up to 160 km, J. Acoust. Soc. Am., 115, 1012 – 1032, doi:10.1121/1.1631937. Sylvander, M., C. Ponsolles, S. Benahmed, and J. F. Fels (2007), Seismoacoustic recordings of small earthquakes in the Pyrenees: Experimental results, Bull. Seismol. Soc. Am., 97, 294– 304, doi:10.1785/0120060009. Thelen, W. A., R. S. Crosson, and K. C. Creager (2009), Absolute and relative locations of earthquakes at Mount St. Helens, Washington using continuous data: Implications for magmatic processes, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004–2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. Tuffen, H., and D. Dingwell (2005), Fault textures in volcanic conduits: Evidence for seismic trigger mechanisms during silicic eruptions, Bull. Volcanol., 67, 370– 387, doi:10.1007/s00445-004-0383-5. Tuffen, H., R. Smith, and P. R. Sammonds (2008), Evidence for seismogenic fracture of silicic magma, Nature, 453, 511– 514, doi:10.1038/ nature06989. Vallance, J. W., D. J. Schneider, and S. P. Schilling (2009), Growth of the 2004–2006 lava-dome complex at Mount St. Helens, in A Volcano Rekindled: The First Year of Renewed Eruptions at Mount St. Helens, 2004–2006, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, in press. van Vossen, R., J. O. A. Robertsson, and C. H. Chapman (2002), Finitedifference modeling of wave propagation in a fluid-solid configuration, Geophysics, 67, 618– 624, doi:10.1190/1.1468623. Viktorov, I. A. (1967), Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum, New York. Virieux, J. (1986), P-SV wave propagation in heterogeneous media: Velocity- stress finite-difference method, Geophysics, 51, 889 – 901, doi:10.1190/1.1442147. Waite, G. P., and S. C. Moran (2006), Crustal P wave speed structure under Mount St. Helens from local earthquake tomography, Eos Trans. AGU, 87, Fall Meet. Suppl., Abstract V11B-0578. Waite, G. P., B. A. Chouet, and P. B. Dawson (2008), Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems, J. Geophys. Res., 113, B02305, doi:10.1029/2007JB005259. Waxler, R., C. L. Talmadge, S. Dravida, and K. E. Gilbert (2006), The nearground structure of the nocturnal sound field, J. Acoust. Soc. Am., 119, 86– 95, doi:10.1121/1.2139654. Waxler, R., K. E. Gilbert, and C. L. Talmadge (2008), A theoretical treatment of the long range propagation of impulsive signals under strongly ducted nocturnal conditions, J. Acoust. Soc. Am., 124, 2742 – 2754, doi:10.1121/1.2980520. Yamasato, H. (1998), Nature of infrasonic pulse accompanying low frequency earthquake at Unzen Volcano, Japan, Bull. Volcanol. Soc. Jpn., 43, 1 – 13. Yamasato, H., J. Miyamura, H. Mori, Y. Usui, K. Sakuma, A. Watanabe, J. Sato, Y. Takahashi, and T. Sakai (2002), Eruptive activity inferred from infrasound associated with the 2000 eruption of Usu Volcano (in Japanese, English abstract), Bull. Volcanol. Soc. Jpn., 47, 255– 262.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMatoza, R. S.en
dc.contributor.authorGarcés, M. A.en
dc.contributor.authorChouet, B. A.en
dc.contributor.authorD'Auria, L.en
dc.contributor.authorHedlin, M. A. H.en
dc.contributor.authorDe Groot-Hedlin, E.en
dc.contributor.authorWaite, G. P.en
dc.contributor.departmentLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.departmentInfrasound Laboratory, Hawai’i Institute of Geophysics andPlanetology, University of Hawai’i at Manoaen
dc.contributor.departmentU.S. Geological Survey, Menlo Park, Californiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.departmentLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of Californiaen
dc.contributor.departmentU.S. Geological Survey, Menlo Park, Californiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California-
crisitem.author.deptInfrasound Laboratory, Hawai’i Institute of Geophysics andPlanetology, University of Hawai’i at Manoa-
crisitem.author.deptU.S. Geological Survey, Menlo Park, California-
crisitem.author.deptLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California-
crisitem.author.deptLaboratory for Atmospheric Acoustics, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California-
crisitem.author.deptU.S. Geological Survey, Menlo Park, California-
crisitem.author.orcid0000-0002-7664-2216-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MatGar-09.pdf7.45 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

53
checked on Feb 10, 2021

Page view(s) 50

172
checked on Apr 24, 2024

Download(s)

34
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric