Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/536
DC FieldValueLanguage
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGranieri, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallWerner, C.; Institute of Geological and Nuclear Sciences, Taupo, New Zealanden
dc.date.accessioned2005-11-14T10:36:01Zen
dc.date.available2005-11-14T10:36:01Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/536en
dc.description.abstractWe present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic-hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil-gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (Kc). For each area, we computed the values of Kc which range from 0.4 to 2.3 W m 1 C 1. Using the CO2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.en
dc.format.extent419 bytesen
dc.format.extent1595508 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAmerican geophysical unionen
dc.relation.ispartofJournal of geophysical research. B, Solid planetsen
dc.relation.ispartofseries11, B08204en
dc.subjectCarbon dioxideen
dc.subjectThermal gradienten
dc.subjectEnergy releaseden
dc.titleCarbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systemsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-17en
dc.identifier.URLwww.agu.orgen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flowen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV05. General::05.06. Methods::05.06.99. General or miscellaneousen
dc.identifier.doi10.1029/2004JB003542en
dc.relation.referencesBrombach, T., J. C. Hunziker, G. Chiodini, C. Cardellini, and L. Marini (2001), Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece), Geophys. Res. Lett., 28, 69– 72. Brombach, T., S. Caliro, G. Chiodini, J. Fiebig, J. C. Hunziker, and B. Raco (2003), Geochemical evidences for mixing of magmatic fluids with sea-water, Nisyros hydrothermal system, Greece, Bull. Volcanol., 65, 505–516, doi:10.107/s00445-003-0278-x. Brown, G., H. Rymer, J. Dowden, P. Kapadia, D. Stevenson, J. Baquero, and L. D. Morales (1989), Energy budget analysis for Poa`s crater lake: Implications for predicting volcanic activity, Nature, 339, 370–373. Caliro, S.,G. Chiodini, G. Galluzzo, D. Granieri,M. La Rocca, G. Saccorotti, and G. Ventura (2004), Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data, Bull. Volcanol., 67, 358–369, doi:10.1007/s00445-004-0381-7. Carapezza, M. L., and D. Granieri (2004), CO2 soil flux at Vulcano (Italy):Comparison of active and passive methods and application to the identification of actively degassing structure, Appl. Geochem., 19, 73– 88. Cardellini, C., G. Chiodini, and F. Frondini (2003), Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release, J. Geophys. Res., 108(B9), 2425, doi: 10.1029/2002JB002165. Chiodini, G., and L. Marini (1998), Hydrothermal gas equilibria: The H2OH2-CO2-CO-CH4 system, Geochim. Cosmochim. Acta, 62, 2673–2687. Chiodini, G., R. Cioni, B. Raco, and G. Scandiffio (1991), Carbonyl sulphide (COS) in geothermal fluids: An example from the Larderello Field (Italy), Geothermics, 20(5/6), 319–327. Chiodini, G., R. Cioni, C. Leonis, L. Marini, and B. Raco (1993a), Fluid geochemistry of Nisyros island, Dodecanese, Greece, J. Volcanol. Geotherm. Res., 56, 95–112. Chiodini, G., R. Cioni, and L. Marini (1993b), Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance, Appl. Geochem., 8, 357– 371. Chiodini, G., R. Cioni, L. Marini, and C. Panichi (1995), Origin of the fumarolic fluids of Vulcano Island, Italy, and implications for the volcanic surveillance, Bull. Volcanol., 57, 99–110. Chiodini, G., F. Frondini, and B. Raco (1996), Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy), Bull. Volcanol., 58, 41–50. Chiodini, G., R. Cioni, M. Guidi, B. Raco, and L. Marini (1998), Soil CO2 flux measurements in volcanic and geothermal areas, Appl. Geochem., 13, 543–552. Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura (2001a), CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy, J. Geophys. Res., 106, 16,213–16,221. Chiodini, G., L. Marini, and M. Russo (2001b), Geochemical evidences of high temperature hydrothermal brines at Vesuvio volcano (Italy), Geochim. Cosmochim. Acta, 65(13), 2129– 2147. Chiodini, G., M. Todesco, S. Caliro, C. Del Gaudio, G. Macedonio, and M. Russo (2003), Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy), Geophys. Res. Lett., 30(8), 1434,doi:10.1029/2002GL016790. Chiodini, G., R. Avino, T. Brombach, S. Caliro, C. Cardellini, S. De Vita, F. Frondini, D. Granieri, E. Marotta, and G. Ventura (2004), Fumarolic and diffuse soil degassing west Mount Epomeo, Ischia (Italy), J. Volcanol. Geotherm. Res., 133, 291– 309. Cioni, R., E. Corazza, and L. Marini (1984), The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegrean Fields (Italy), Bull. Volcanol., 47, 295– 302. Civetta, L., Y. Cornette, P. Y. Gillot, and G. Orsi (1988), The eruptive history of Pantelleria (Sicily Channel) in the last 50 ka, Bull. Volcanol., 50, 47–57. Clauser, C., and E. Huenges (1995), Thermal conductivity of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constant, AGU Ref. Shelf. Ser., vol. 3, edited by T. J. Ahrens, pp. 105–126, AGU, Washington, D. C. Connor, C., B. Hill, P. LaFemina, M. Navarro, and M. Conway (1996), Soil 222Rn pulse during the initial phase of the June –August 1995 eruption of Cerro Negro, Nicaragua, J. Volcanol. Geotherm. Res., 73, 119– 127. D’Alessandro, W., G. Dongarra, S. Gurrieri, F. Parello, and M. Valenza (1994), Geochemical characterization of naturally occurring fluids on the island of Pantelleria, Miner. Petrogr. Acta, 27, 91– 102. de Vries, D. A. (1963), Thermal properties of soils, in Physics of Plant Environment, edited by W. R. van Wijk, pp. 210– 235, Elsevier, New York. Evans, W. C., M. L. Sorey, B. M. Kennedy, D. A. Stonestrom, J. D. Rogie, and D. L. Shuster (2001), High CO2 emissions through porous media: transport mechanisms and implications for flux measurement and fractionation, Chem. Geol., 177, 15– 29. Frondini, F., G. Chiodini, S. Caliro, C. Cardellini, D. Granieri, and G. Ventura (2004), Diffuse CO2 degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642–651. Giggenbach, W. F. (1975), A simple method for the collection and analysis of volcanic gas samples, Bull. Volcanol., 39, 132– 145. Giggenbach, W. F. (1991), Chemical techniques in geothermal exploration, in Application of Geochemistry in Geothermal Reservoir Development, coordinated by F. D’Amore, pp. 119– 144, United Nations Inst. for Train. and Res., New York. Giggenbach, W. F., and R. L. Goguel (1989), Collection and analysis of geothermal and volcanic water and gas discharges, Rep. CD.2401, Dep. of Sci. and Ind. Res., Chem. Div., Petone, New Zealand. Granieri, D., G. Chiodini, W. Marzocchi, and R. Avino (2003), Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): Influence of environmental and volcanic parameters, Earth Planet. Sci. Lett., 212, 167–179. Hochstein, M. P., and C. J. Bromley (2004), Measurement of heat flux from steaming ground, Geothermics, 34, 131– 158. Hurst, A. W., H. M. Bibby, B. J. Scott, and M. J. McGuinness (1991), The heat source of Ruapehu Crater Lake: Deductions from the energy and mass balances, J. Volcanol. Geotherm. Res., 46, 1 –20. Keenan, J. H., F. G. Keyes, P. G. Hill, and J. G. Moore (1969), Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases, 162 pp., John Wiley, Hoboken, N. J. Lardy, M., and A. Tabbagh (1999), Measuring and interpreting heat fluxes from shallow volcanic bodies using vertical temperature profiles: A preliminary test, Bull. Volcanol., 60, 441– 447. Lewicki, J. L., C. Connor, K. St-Amand, J. Stix, and W. Spinner (2003), Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua, Geophys. Res. Lett., 30(15), 1817, doi:10.1029/2003GL017731. McKnight, S. B., and S. N. Williams (1997), Old cinder cone or young composite volcano? The nature of Cerro Negro, Nicaragua, Geology, 25, 339– 342. Mercalli, G., and O. Silvestri (1891), Le eruzioni dell’isola di Vulcano incominciate il 3 agosto 1988 e terminate il 22 marzo 1890. Relazione scientifica, Ann. Uff. Cent. Meteor. Geodin., 10(4), 213 pp. Mooser, F., H. Meyer-Abich, and A. R. McBirney (1956), Catalog of Active Volcanoes of the World, part VI, Naples, 146 pp., Int. Assoc. of Volcanol. and Chem. of the Earth’s Inter., Rome, Italy. Nuccio, P. M., A. Paonita, and F. Sortino (1999), Geochemical modeling of mixing between magmatic and hydrothermal gases: The case of Vulcano Island, Italy, Earth Planet. Sci. Lett., 167, 321– 333. Nunziata, C., R. Mele, and M. Natale (1999), Shear wave velocities and primary influencing factors of Campi Flegrei– Neapolitan deposits, Eng. Geol., 54, 299– 312. Parkinson, K. J. (1981), An improved method for measuring soil respiration in the field, J. Appl. Ecol., 18, 221–228. Pasternack, G. B., and J. C. Varekamp (1997), Volcanic lake systematics: I. Physical constraints, Bull. Volcanol., 58, 528–538. Pruess, K. (1991), TOUGH2: A general purpose numerical simulator for multiphase fluid and heat flow, Rep. LBL 29400, Lawrence Berkeley Natl. Lab., Berkeley, Calif. Pruess, K., C. Oldenburg, and G. Moridis (1999), TOUGH2: User’s guide, version 2.0. Rep. LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif. Salazar, J. M. L., P. A. Hernandez, N. M. Perez, G. Melian, J. Alvarez, F. Segura, and K. Notsu (2001), Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America, Geophys. Res. Lett., 28, 4275– 4278. Santacroce, R. (1987), Somma-Vesuvius, Quad. Ric. Sci., 114(8), Cons. Naz. delle Ric., Rome, Italy. Severne, C. M., and M. P. Hochstein (1994), Heat and mass transfer of the Hipaua thermal area (Tokaanu-Waihi geothermal field) Lake Taupo, New Zealand, Proceedings of the 16th New Zealand Geothermal Workshop, edited by S. Soengkono and K. C. Lee, pp. 209–214, Univ. of Auckland, Auckland, New Zealand. Sheperd, J. B., and H. Sigurdsson (1978), The Soufriere Crater Lake as a calorimeter, Nature, 271, 344– 345. Simkin, T., and L. Siebert (1994), Volcanoes of the World, 2nd ed., 349 pp., Geosci. Press, Tucson, Ariz. Sorey, M. L., and E. M. Colvard (1994), Measurements of heat and mass flow from thermal areas in Lassen volcanic national park. California, 1984– 93, U.S. Geol. Surv. Water Resour. Invest. Rep., 94-4180-A. Squarci, P., G. Giannelli, S. Grassi, M. Mussi, and F. D’Amore (1994), Preliminary results of geothermal prospecting on the Island of Pantelleria, Acta Vulcanol., 5, 117–123. Stoiber, R. E., S. N. Williams, and B. J. Huebert (1986), Sulfur and halogen gases at Masaya caldera complex, Nicaragua: Total flux and variations with time, J. Geophys. Res., 91, 2215–2231. Tedesco, D., G. Miele, Y. Sano, and J. P. Toutain (1995), Helium isotopic ratio in Vulcano island fumaroles: Temporal variations in shallow level mixing and deep magmatic supply, J. Volcanol. Geotherm. Res., 64, 117–128. Todesco, M., G. Chiodini, and G. Macedonio (2003), Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy): An interdisciplinary approach to the study of diffuse degassing, J. Volcanol. Geotherm. Res., 125, 57– 79. Tonani, F., and G. Miele (1991), Methods for measuring flow of carbon dioxide through soils in the volcanic setting, paper presented at International Conference on Active Volcanoes and Risk Mitigation, Int. Assoc. of Volcanol. and Chem. of the Earth’s Inter., Naples, Italy, 27 Aug. to 1 Sept. Vezzoli, L. (1988), Island of Ischia, Quad. Ric. Sci., 114(10), Cons. Naz. delle Ric., Rome, Italy. Walker, J. A., and M. J. Carr (1986), Compositional variations caused by phenocryst sorting at Cerro Negro volcano, Nicaragua, Geol. Soc. Am. Bull., 97, 1156– 1162. Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4(7), 1061, doi:10.1029/2002GC000473. Williams, S. N. (1983), Plinian airfall deposits of basaltic composition, Geology, 11, 211– 214. Wood, C. A. (1978), Morphometric evolution of composite volcanoes, Geophys. Res. Lett., 5, 437– 439. Woodside, W., and J. Messmer (1961), Thermal conductivity of porous media. I: Unconsolidated sand, J. Appl. Phys., 32, 1688– 1699.en
dc.description.fulltextpartially_openen
dc.contributor.authorChiodini, G.en
dc.contributor.authorGranieri, D.en
dc.contributor.authorAvino, R.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorCosta, A.en
dc.contributor.authorWerner, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInstitute of Geological and Nuclear Sciences, Taupo, New Zealanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-2831-723X-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Chiodini G.pdf1.56 MBAdobe PDF
agu.htmredirect - agu419 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

126
checked on Feb 10, 2021

Page view(s) 5

592
checked on Apr 24, 2024

Download(s) 50

165
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric