Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5368
DC FieldValueLanguage
dc.contributor.authorallGalluzzo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallLa Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCastellano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2009-12-23T10:26:21Zen
dc.date.available2009-12-23T10:26:21Zen
dc.date.issued2009-06en
dc.identifier.urihttp://hdl.handle.net/2122/5368en
dc.description.abstractThe site-corrected source scaling pattern is estimated for local earthquakes (0:9 ≤MD ≤ 3:6) at Mt. Vesuvius. The dataset comprises 35 low-to-moderate local earthquakes recorded by 14 three-component seismic stations during 1993, 1996, and 1999. Site-transfer functions in the frequency range 1 Hz–25 Hz are estimated from the spectra of S waves and coda waves and from the horizontal-to-vertical (H=V) spectral ratios. We applied the direct spectral ratios method to S waves, considering as a reference the average spectrum and the inversion method to S waves and coda waves. The site amplification on the coda waves was also compared with that evaluated using the wavelet transform. The standard deviation associated with the experimental results is computed for all of the used methods. Results indicate a general agreement among the methods, and the site-transfer functions show interesting features. The highest amplifications are found for frequencies lower than 12 Hz for sites located at lower altitude. The methods based on coda waves show highest amplification with respect to the methods based on S waves for most of the sites located in the summit part of the volcano. This can be a phenomenon of coda localization, which consists in the trapping inside the upper part of the volcano of scattered waves. The H=V spectral ratios do not show total agreement with the other methods, mostly for the sites located in the summit part of the volcano. The discrepancies among the results obtained in this work are also due to the different normalization applied in the methods of analysis. Generalized inversion method allowed us to estimate the source scaling of the site-corrected source seismic spectrum for the investigated area. The source scaling obtained in terms of seismic moment and source radii shows that the seismicity of Mt. Vesuvius is characterized by stress drop as low as a few bars (10 bars) except for the event of MD 3:6 (Δσ 100 bars). The scaling pattern shows an apparent linear relationship between source size and seismic moment (for MD ≤ 3:3) but the statistical test shows that the linear trend has low reliability.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of America.en
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries3/99(2009)en
dc.subjectSource Scalingen
dc.subjectSite Effectsen
dc.subjectMt. Vesuviusen
dc.titleSource Scaling and Site Effects at Vesuvius Volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1705-1719en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1785/0120080142en
dc.relation.referencesAbercrombie, R. E. (1995). Earthquake source scaling relationship from 1 to 5ML using seismograms recorded at 2.5 km depth, J. Geophys. Res. 100, 24015–24036. Aki, K., and B. Chouet (1975). Origin of coda waves: source, attenuation, and scattering effect, J. Geophys. Res. 80, 3322–3342. Aki, K., and V. Ferrazzini (2000). Seismic monitoring and modeling on an active volcano for prediction, J. Geophys. Res. 105, no. B7, 16617–16640. Archuleta, R. J. (1982). Analysis of near-source static and dynamic measurements from the 1979 Imperial Valley earthquake, Bull. Seismol. Soc. Am. 72, 1927–1956. Atkinson, G. (1993). Earthquake source spectra in eastern North America, Bull. Seismol. Soc. Am. 83, 1778–1798. Bianco, F., M. Castellano, E. Del Pezzo, and J. M. Ibanez (1999). Attenuation of short-period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int. 138, 67–76. Birgoren, G., and K. Irikura (2005). Estimation of site response in time domain using the Meyer–Yamada wavelet analysis, Bull. Seismol. Soc. Am. 95, no. 4, 1447–1456. Bonilla, L. F., H. J. Steidl, G. T. Lindley, A. G. Tumarkin, and R. Archuleta (1997). Site amplification in the San Fernando Valley, California: Variability of the site-effect estimation using the S-wave, coda, and H=V methods, Bull. Seismol. Soc. Am. 87, no. 3, 710–730. Boore, D. M. (2004). Can site response be predicted?, J. Earthq. Eng. 8, no. 1, 1–41. Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay, Bull. Seismol. Soc. Am. 60, 29–61. Brune, J. N. (1970). Tectonic stress and seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. N. (1971). Correction, J. Geophys. Res. 76, 5002. Chávez-García , F. J., M. Rodriguez, E. H. Field, and D. Hatzfeld (1997). Topographic site effects. A comparison of two nonreference methods, (Short Note), Bull. Seismol. Soc. Am. 87, 1667–1673. Cubellis, E., G. Luongo, and A. Maturano (2007). Seismic hazard assessment at Mt. Vesuvius: Maximum expected magnitude, J. Vol. Geoth. Res. 162, 139–148. Del Pezzo, E., F. Bianco, and G. Saccorotti (2004). Seismic source dynamics at Vesuvius volcano, Italy, J. Vol. Geoth. Res. 133, 23–39. Del Pezzo, E., F. Bianco, and L. Zaccarelli (2006). Separation of Qi and Qs from passive data at Mt. Vesuvius: A reappraisal of the seismic attenuation estimates, Phys. Earth Planet. Interiors. 159, 202–212. Del Pezzo, E., S. De Martino, M. T. Parrinello, and C. Sabbarese (1993). Seismic site amplification factors in Campi Flegrei, southern Italy, Phys. Earth. Plan. Interiors. 78, 105–117. Drouet, S., A. Souriau, and F. Cotton (2005). Attenuation, seismic moments, and site effects for weak-motion events: Application to Pyrenees, Bull. Seismol. Soc. Am. 95, no. 5, 1731–1748. Field, E. H. (1996). Spectral amplification in a sediment-filled valley exhibiting clear basin-edge induced waves, Bull. Seismol. Soc. Am. 86, 991–1005. Frankel, A., and L. Wennerberg (1989). Microearthquake spectra from the Anza, California seismic network: site response and source scaling, Bull. Seismol. Soc. Am. 79, no. 3, 581–609. Galluzzo, D., E. Del Pezzo, R. Maresca, M. La Rocca, and M. Castellano (2006). Site-effect estimation and source-scaling dynamics for local earthquakes at Mt. Vesuvius, Italy, Proceedings of Third International Symposium of Surface Geology on Seismic Motion, Grenoble, France, September 2006, 951–960. Guidoboni, E., and A. Comastri (2005). Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th CenturyIsituto Nazionale di Geofisica e Vulcanologia, Rome. Ide, S., G. C. Beroza, S. G. Prejean, and W. L. Ellsworth (2003). Apparent break in earthquake scaling due to path and site effect on deep borehole recordings, J. Geophys. Res. 108, no. B5, 2271. Jin, A., C. A. Moya, and M. Ando (2000). Simultaneous determination of site response and source parameters of small earthquakes along the Atotsugawa Fault Zone, central Japan, Bull. Seismol. Soc. Am. 90, no. 6, 1430–1445. Kanamori, H., and L. Rivera (2004). Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop, Bull. Seismol. Soc. Am. 94, no. 1, 314–319. Kato, K., K. Aki, and M. Takemura (1995). Site amplification from coda waves: Validation and application to S-wave site response, Bull. Seismol. Soc. Am. 85, no. 2, 467–477. Lachet, C., D. Hatzfeld, P. Bard, N. Theodulidis, C. Papaioannou, and A. Savvaidis (1996). Site effect and microzonation in the city of Thessaloniky (Greece). Comparison of different approaches, Bull. Seismol. Soc. Am. 86, no. 6, 1692–1703. Lay, T., and T. C. Wallace (1995). Modern Global Seismology, Academic Cambridge Press, London. Malagnini, L., K. Mayeda, A. Akinci, and P. L. Bragato (2004). Estimating absolute site effects, Bull. Seismol. Soc. Am. 94, no. 4, 1343–1352. Mayeda, K., and W. R. Walter (1996). Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes, J. Geophys. Res. 101, 11,195–11,208. Mayeda, K., S. Koynagi, and K. Aki (1991). Site amplification from S-wave coda in the Long Valley Caldera region, California, Bull. Seismol. Soc. Am. 81, no. 6, 2194–2213. Meyer, Y. (1989). Orthonormal wavelets, in Wavelets, J. M. Combes, A. Grossman and P. Tchamitchian (Editors), Springer, Berlin. O’Connell, D. R. H. (1999). Replication of apparent nonlinear seismic response with linear wave propagation models, Science 283, no. 26, 2045–2050. Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities, Earthq. Eng. Struct. Dyn. 31, 1831–1853. Parolai, S., D. Bindi, and L. Troiani (2001). Site response for the RSM Seismic Network and Source Parameters in the central Appenines (Italy), Pure Appl. Geophys. 158, 695–715. 1716 D. Galluzzo, E. Del Pezzo, M. La Rocca, M. Castellano, and F. Bianco Phillips, W. S., and K. Aki (1986). Site amplification of coda waves from local earthquakes in central California, Bull. Seismol. Soc. Am. 76, 627–648. Sato, H., and M. Fehler (1997). Seismic Wave Propagation and Scattering in the Heterogenous Earth, Springer-Verlag New York. Satoh, T., H. Kawase, and S. Matsushima (2001). Differences between site characteristics obtained from microtremors, S waves, P waves, and codas, Bull. Seismol. Soc. Am. 91, 313–334. Scarpa, R., F. Tronca, F. Bianco, and E. Del Pezzo (2002). High resolution velocity structure beneath Mount Vesuvius from seismic array data, Geophys. Res. Lett. 29, no. 21, 2040, doi 10.1029/2002GL015576. Sonley, E., and R. E. Abercrombie (2006). Effects of methods of attenuation correction on source parameter determination, Earthquakes: Radiated Energy and the Physics of Faulting, Geophysical Monograph Series, Vol. 170, AGU. Steidl, J. H., A. G. Tumarkin, and R. J. Archuleta (1996). What is a reference site?, Bull. Seismol. Soc. Am. 86, 1733–1748. Tramelli, A. (2008). Elastic propagation in random media: application to the imaging of volcano structures, PhD Thesis. Wald, D. J., and T. I. Allen (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bull. Seismol. Soc. Am. 97, 1379–1395.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGalluzzo, D.en
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorLa Rocca, M.en
dc.contributor.authorCastellano, M.en
dc.contributor.authorBianco, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniverista della Calabria, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8952-9271-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0003-1166-3486-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
GalDel-09.pdf1.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

12
checked on Feb 10, 2021

Page view(s)

313
checked on Mar 16, 2024

Download(s)

33
checked on Mar 16, 2024

Google ScholarTM

Check

Altmetric