Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5064
DC FieldValueLanguage
dc.contributor.authorallMaugeri, T.; Dipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.authorallLentini, V.; Dipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.authorallGugliandolo, C.; Dipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCousin, S.; Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,en
dc.contributor.authorallStackebrandt, E.en
dc.date.accessioned2009-06-04T09:24:43Zen
dc.date.available2009-06-04T09:24:43Zen
dc.date.issued2009-01en
dc.identifier.urihttp://hdl.handle.net/2122/5064en
dc.description.abstractThe aim of this study was to investigate the microbial community thriving at two shallow hydrothermal vents off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the vents on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two vents, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphuroxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 105 cells ml-1, expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77–3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR–DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture- dependent and -independent methods. The primary production at the shallow hydrothermal system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs.en
dc.language.isoEnglishen
dc.publisher.nameSpringeren
dc.relation.ispartofExtremophilesen
dc.relation.ispartofseries1/13 (2009)en
dc.subjecthydrothermal ventsen
dc.subjectbacteriaen
dc.subjectgeochemistryen
dc.subjectfluidsen
dc.titleBacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber199-212en
dc.subject.INGV03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactionsen
dc.identifier.doi10.1007/s00792-008-0210-6en
dc.relation.referencesThe aim of this study was to investigate the microbial community thriving at two shallow hydrothermal vents off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the vents on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two vents, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphuroxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 105 cells ml-1, expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77–3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR–DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture- dependent and -independent methods. The primary production at the shallow hydrothermal system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs. 775 Ehrhardt CJ, Haymon RM, Lamontagne MG, Holden PA (2007) 776 Evidence for hydrothermal Archaea within the basaltic flanks of 777 the East Pacific Rise. Environ Microbiol 9:900–912 778 Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel 779 electrophoresis profiles of 16S rRNA-defined populations inhab- 780 iting a hot spring microbial mat community. Appl Environ 781 Microbiol 62:340–346 782 Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a 783 novel genus of marine heterotrophic archaebacteria growing 784 optimally at 100 C. Arch Microbiol 145:56–61 785 Garrity GM, Bell JA, Lilburn T (2005) Order V. Thiotrichales ord. 786 nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) 787 Bergey’s manual of systematic bacteriology, (The Proteobacte- 788 ria), part B (The Gammaproteobacteria), New York, Springer, 789 p 131 790 Glissman K, Chin KJ, Casper P, Conrad R (2004) Methanogenic 791 pathway and archaeal community structure in the sediment of 792 eutrophic Lake Dagow: effect of temperature. Microb Ecol 793 48:389–399 794 Graff A, Stubner S (2003) Isolation and molecular characterization of 795 thiosulphate-oxidizing bacteria from an Italian rice field soil. 796 Syst Appl Microbiol 26:445–452 797 Gugliandolo C, Maugeri TL (1998) Temporal variations in hetero- 798 trophic mesophilic bacteria from a marine shallow hydrothermal 799 vent off the Island of Vulcano (Eolian Islands, Italy). Microb 800 Ecol 36:13–22 801 Gugliandolo C, Italiano F, Maugeri TL, Inguaggiato S, Caccamo D, 802 Amend JP (1999) Submarine hydrothermal vents of the Eolian 803 Islands: relationship between microbial communities and ther- 804 mal fluids. Geomicrobiol J 16:105–117 805 Gugliandolo C, Maugeri TL, Caccamo D, Stackebrandt E (2003) 806 Bacillus aeolius sp. nov. a novel thermophilic, halophilic marine 807 Bacillus species from Eolian Islands (Italy). Syst Appl Microbiol 808 26:172–176 809 Gugliandolo C, Italiano F, Maugeri TL (2006) The submarine 810 hydrothermal system of Panarea (Southern Italy): biogeochem- 811 ical processes at the thermal fluids—sea bottom interface. Ann 812 Geophys 49:783–792 813 Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf 814 S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., a 815 novel hyperthermophilic archaeum that oxidizes Fe2? at neutral 816 pH under anoxic conditions. Arch Microbiol 166:308–314 817 Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium 818 ferrooxidans sp. nov., a phototrophic green sulphur bacterium 819 that oxidizes ferrous iron in coculture with a ‘Geospirillum’ 820 sp. strain. Arch Microbiol 172:116–124 821 Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, 822 Furushima Y, Yamamoto H, Oomori T, Horikoshi K (2007) 823 Culture-dependent and -independent characterization of micro- 824 bial communities associated with a shallow submarine 825 hydrothermal system occurring within a Coral Reef off Taketomi 826 Island, Japan. Appl Environ Microbiol 73:764–7656 827 Huber H, Stetter KO (1989) Thiobacillus prosperus sp. nov., 828 represents a new group of halotolerant metal-mobilizing bacteria 829 isolated from a marine geothermal field. Arch Microbiol 830 151:479–485 831 Huber R, Langworthy TA, Ko¨nig H, Thomm M, Woese CR, Sleytr 832 UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents 833 a new genus of unique extremely thermophilic eubacteria 834 growing up to 90 C. Arch Microbiol 144:324–333 835 Italiano F, Nuccio PM (1991) Geochemical investigations of 836 submarine volcanic exhalations to the East of Panarea, Eolian 837 Islands, Italy. J Volcanol Geotherm Res 46:125–141 838 Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences 839 in vegetation composition and plant species identity lead to onlyminor changes in soil-borne microbial communities in a former 840 arable field. FEMS Microbiol Ecol 63:372–382 841 Kodama Y, Watanabe K (2003) Isolation and characterization of a 842 sulphur-oxidizing chemolithotroph growing on crude oil under 843 anaerobic conditions. Appl Environ Microbiol 69:107–112 844 Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, 845 Goodfellow M, Wiley J, Sons LDT (eds) Nucleic acid techniques 846 in bacterial systematics. West Sussex, UK, pp 115–175 847 Manini E, Luna GM, Corinaldesi C, Zeppilli D, Bortoluzzi G, 848 Caramanna G, Raffa F, Danovaro R (2008) Prokaryote diversity 849 and virus abundance in shallow hydrothermal vents of the 850 Mediterranean Sea (Panarea Island) and the Pacific Ocean (North 851 Sulawesi-Indonesia). Microb Ecol 55:626–639 852 Maugeri TL, Acosta Pomar MLC, Bruni V (1990) Picoplancton. In: 853 Innamorati M, Ferrari I, Marino D, Ribera D’Alcala` M (eds) 854 Metodi per lo studio del plancton marino. Nova Thalassia Lint 855 Trieste, Italy, pp 199–205 856 Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A 857 polyphasic taxonomic study of thermophilic bacilli from shal- 858 low, marine vents. Syst Appl Microbiol 24:572–587 859 Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2002) 860 Three novel halotolerant and thermophilic Geobacillus strains 861 from shallow marine vents. Syst Appl Microbiol 25:450–455 862 Miller TR, Franklin MP, Halden RU (2007) Bacterial community 863 analysis of shallow groundwater undergoing sequential anaero- 864 bic and aerobic chloroethane biotransformation. FEMS 865 Microbiol Ecol 60:299–311 866 Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization 867 of microbial community structure in Gulf of Mexico gas 868 hydrates: comparative analysis of DNA- and RNA-derived clone 869 libraries. Appl Environ Microbiol 71:3235–3247 870 Muyzer G (1999) DGGE/TGGE a method for identifying genes from 871 natural ecosystems. Curr Opin Microbiol 2:317–322 872 Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex 873 microbial populations by denaturing gradient gel electrophoresis 874 analysis of polymerase chain reaction amplified genes coding for 875 16S rRNA. Appl Environ Microbiol 59:695–700 876 Muyzer G, Hottentra¨ger S, Teske A, Wawer C (1996) Denaturing 877 gradient gel electrophoresis of PCR-amplified 16S rDNA—A 878 new molecular approach to analyse the genetic diversity of 879 mixed microbial communities. In: Akkermans ADL, van Elsas 880 JD, de Bruijn FJ (eds) Molecular microbial ecology manual. 881 Kluwer Academic Publishers, Dordrecht, pp 1–23 882 Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, 883 Hirayama H, Nunoura T, Horikoshi Sako Y (2005) Variability in 884 microbial community and venting chemistry in a sediment- 885 hosted backarc hydrothermal system: impacts of subseafloor 886 phase-separation. FEMS Microbiol Ecol 54:141–155 887 Page A, Juniper SK, Olagnon M, Alain K, Desrosiers G, Querellou J, 888 Cambon-Bonavita MA (2004) Microbial diversity associated 889 with a Paralvinella sulfincola tube and the adjacent substratum 890 on an active deep-sea vent chimney. Geobiology 2:225–238 891 Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group specific 892 16S rRNA hybridization probes to describe natural communities 893 of methanogens. Appl Environ Microbiol 60:1232–1240 894 Rogers KL, Amend JP (2005) Archaeal diversity and geochemical 895 energy yields in a geothermal well on Vulcano Island, Italy. 896 Geobiology 3:319–332 897 Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted 898 oligonucleotide probes for (hyper) thermophilic archaea and 899 bacteria. Extremophiles 8:357–366 900 Rusch A, Walpersdorf E, deBeer D, Gurrieri S, Amend JP (2005) 901 Microbial communities near the oxic/anoxic interface in the 902 hydrothermal system of Vulcano Island, Italy. Chem Geol 903 224:169–182 Sievert SM, Brinkhoff T, Muyzer G, Ziebis W, Kuever J (1999) 906 Spatial heterogeneity of bacterial populations along an environ- 907 mental gradient at a shallow submarine hydrothermal vent near 908 Milos Island (Greece). Appl Environ Microbiol 65:3834–3842 909 Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S 910 ribosomal DNA-defined bacterial populations at a shallow 911 submarine hydrothermal vent near Milos Island (Greece). Appl 912 Environ Microbiol 66:3102–3109 913 Sievert SM, Scott KM, Klotz MG, Chain PS, Hauser LJ, Hemp J, 914 Hugler M, Land M, Lapidus A, Larimer FW, Lucas S, Malfatti 915 SA, Meyer F, Paulsen IT, Ren Q, Simon J (2008) Genome of the 916 epsilonproteobacterial chemolithoautotroph Sulfurimonas deni- 917 trificans. Appl Environ Microbiol 74:1145–1156 918 Skoog A, Vlahos P, Rogers KL, Amend JP (2007) Concentrations, 919 distributions, and energy yields of dissolved neutrals aldoles in a 920 shallow hydrothermal vent system of Vulcano, Italy. Org 921 Geochem 38:1416–1430 922 Stahl DA, Amann RI (1991) Development and application of nucleic 923 acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic 924 acid techniques in bacterial systematics. Wiley, New York, pp 925 205–248 926 Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov. a new 927 taxon of extremely thermophilic Archaebacteria. Syst Appl 928 Microbiol 10:172–173 929 Stetter KO, Ko¨nig H, Stackebrandt E (1983) Pyrodictium gen. nov., a 930 new genus of submarine disc-shaped sulfur reducing Archae- 931 bacteria growing optimally at 105 C. Syst Appl Microbiol 932 4:535–551 933 Sugisaki R, Taki K (1987) Simplified analysis of He, Ne and Ar 934 dissolved in natural waters. Chem J 21:21–23 Suzuki MT, Beja O, Taylor LT, Delong EF (2001) Phylogenetic 935 analysis of ribosomal RNA operons from uncultivated coastal 936 marine bacterioplankton. Environ Microbiol 3:323–331 937 Svensson E, Skoog A, Amend JP (2004) Concentration and distri- 938 bution of dissolved amino acids in a shallow hydrothermal 939 system, Valcano Island (Italy). Org Geochem 35:1001–1014 940 Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, 941 Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel 942 mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph 943 within the Epsilonproteobacteria isolated from a deep-sea 944 hydrothermal vent polychaete nest, reclassification of Thiomi- 945 crospira denitrificans as Sulfurimonas denitrificans comb. nov. 946 and emended description of the genus Sulfurimonas. Int J Syst 947 Evol Microbiol 56:1725–1733 948 Tuttle JH, Jannasch HW (1972) Occurrence and types of Thiobacil- 949 lus-like Bacteria in the sea. Limnol Oceanogr 32:591–607 950 Van der Gucht K, Sabbe K, De Meester L, Vloemans N, Zwart G, 951 Gillis M, Vyverman W (2001) Contrasting bacterioplankton 952 community composition and seasonal dynamics in two neigh- 953 bouring hypertrophic freshwater lakes. Environ Microbiol 954 3:680–690 955 Zaballos M, Lopez-Lopez A, Ovreas L, Galan Bartual S, D’Auria G, 956 Alba JC, Legault B, Pushker R, Daae FL, Rodriguez-Valera F 957 (2006) Comparison of prokaryotic diversity at offshore oceanic 958 locations reveals a different microbiota in the Mediterranean 959 Sea. FEMS Microbiol Ecol 56:389–405 960 Zhang G, Niu F, Ma X, Liu W, Dong M, Feng H, An L, Cheng G 961 (2007) Phylogenetic diversity of bacteria isolates from the 962 Qinghai-Tibet Plateau permafrost region. Can J Microbiol 963 53:1000–1010en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMaugeri, T.en
dc.contributor.authorLentini, V.en
dc.contributor.authorGugliandolo, C.en
dc.contributor.authorItaliano, F.en
dc.contributor.authorCousin, S.en
dc.contributor.authorStackebrandt, E.en
dc.contributor.departmentDipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.departmentDipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.departmentDipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messinaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDeutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Biologia Animale ed Ecologia Marina, Università di Messina, Salita Sperone, 31, Messina, Italy-
crisitem.author.deptUniversità degli Studi di Enna Kore, Enna, Italy-
crisitem.author.deptDipartimento di Biologia Animale ed Ecologia Marina, Università di Messina, Salita Sperone, 31, Messina, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDeutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,-
crisitem.author.deptDipartimento di Biologia Animale ed Ecologia Marina, Universita` di Messina-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDeutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,-
crisitem.author.orcid0000-0002-7364-0354-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Extremophiles_proof.pdfmain article386.99 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

47
checked on Feb 10, 2021

Page view(s) 10

369
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric