Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/459
DC FieldValueLanguage
dc.contributor.authorallPolacci, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallDel Seppia, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallGiordano, D.; Department of Earth and Environmental Sciences, University of Munich, Munich , Germany - Dipartimento di Scienze Geologiche, Università Roma Tre, Rome , Italyen
dc.contributor.authorallRomano, C.; Dipartimento di Scienze Geologiche, Università Roma Tre, Rome , Italyen
dc.date.accessioned2005-10-07T14:02:39Zen
dc.date.available2005-10-07T14:02:39Zen
dc.date.issued2004-03-15en
dc.identifier.urihttp://hdl.handle.net/2122/459en
dc.description.abstractWe have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.en
dc.format.extent520 bytesen
dc.format.extent455753 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries1-2/131(2004)en
dc.subjecttrachytic magmaen
dc.subjectconduit flowen
dc.subjecteruption dynamics and numerical simulationsen
dc.titleDynamics of magma ascent and fragmentation in trachytic versus rhyolitic eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber93-108en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1016/S0377-0273(03)00319-6en
dc.relation.referencesCarey, S., Sigurdsson H., "The May 18, 1980 eruption of Mount St. Helens 2. Modeling of the dynamics of the Plinian phase", J. Geophys. Res., Volume: 90, (1985), pp. 2948-2958 Carroll, M., Blank J., "The solubility of water in phonolitic melts", Am. Mineral., Volume: 82, (1997), pp. 549-556 Cas, R.A.F., Wright, J., 1987. Volcanic Successions – Modern and Ancient, Chapman and Hall, New York. Cioni, R., Marianelli, P., Santacroce, R., Sbrana, A., 2000. Plinian and Subplinian eruptions. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic press, San Diego, CA, pp. 477–494. Clarke, A.B., Voight B., Neri A., Macedonio G., "Transient dynamics of vulcanian explosions and column collapse", Nature, Volume: 415, (2002), pp. 897-901 CrossRef de Vita, S., Orsi G., Civetta A., Carandente A., D´Antonio M., Deino A., di Cesare T., Di Vito M.A., Fisher R.V., Isaia R., Marotta E., Necco A., Ort M., Pappalardo L., Piochi M., Southon J., "The Agnano Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy)", J. Volcanol. Geotherm. Res., Volume: 91, (1999), pp. 269-301 Bibliographic Page Full text Dingwell, D.B., Hess K.U., Romano C., "Viscosity data for hydrous peraluminous granitic melts; comparison with a metaluminous model", Am. Mineral., Volume: 83, (1998), pp. 236-239 Di Vito, M.A., Isaia R., Orsi G., Southon J., de Vita S., D´Antonio M., Pappalardo L., Piochi M., "Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy)", J. Volcanol. Geotherm. Res., Volume: 91, (1999), pp. 221-246 Bibliographic Page Full text Dobran, F., "Non-equilibrium flow in volcanic conduits and applications to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79", J. Volcanol. Geotherm. Res., Volume: 49, (1992), pp. 285-311 CrossRef Dobran, F., 2001. Volcanic Processes: Mechanisms in Material Transport. Kluwer Academic, New York. Dobran, F., Neri A., Todesco M., "Assessing pyroclastic flow hazard at Vesuvius", Nature, Volume: 367, (1994), pp. 551-554 CrossRef Freundt, A., Rosi, M., 1998. From Magma to Tephra. Springer, Berlin. Fulcher, G.S., "Analysis of recent measurements of the viscosity of glasses", Am. Ceram. Soc. J., Volume: 8, (1925), pp. 339-355 Gardner, J.E., Thomas R.M.E., Jaupart C., Tait S.R., "Fragmentation of magma during Plinian volcanic eruptions", Bull. Volcanol., Volume: 58, (1996), pp. 144-162 Bibliographic Page Gilbert, J.S., Sparks, R.S.J., 1998. The Physics of Explosive Volcanic Eruptions. The Geological Society, London. Giordano, D., Romano, C., Papale, P., Dingwell, D.B., 2003. Viscosity of trachytes from Phlegrean Fields, and comparison with basaltic, phonolitic, and rhyolitic melts. J. Volcanol. Geotherm. Res., in review. Gurioli, L., Houghton, B., Cashman, K., Cioni, R., 2003. Complex changes in eruption dynamics and the transition between Plinian and phreatomagmatic activity during the 79 AD eruption of Vesuvius. Bull. Volcanol., in review. Hess, K.-U., Dingwell D.B., "Viscosities of hydrous leucogranitic melts: A non-Arrhenian model", Am. Mineral., Volume: 81, (1996), pp. 1297-1300 Innocenti, Innocenti, F., Manetti, P., Mazzuoli, R., Pasquarè, G., Villari, L., 1982. Anatolia and North-western Iran. In: Thorpe, R.S. (Ed.), Andesites. Wiley and Sons, New York, pp. 327–349. Klug, C., Cashman K.V., "Permeability development in vesiculating magmas: implications for fragmentations", Bull. Volcanol., Volume: 58, (1996), pp. 87-101 Klug, C., Cashman K.V., Bacon C.R., "Structure and physical characteristics of pumice from the climactic eruption of Mt Mazama (Crater Lake), Oregon", Bull. Volcanol., Volume: 64, (2002), pp. 486-501 CrossRef Lange, R.A., "The effects of H2O, CO2 and F on the density and viscosity of silicate melts", Mineral. Soc. Am. Rev. Mineral., Volume: 30, (1994), pp. 331-369 Lange, R.A., Carmichael I.S.E., "Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties", Geochim. Cosmochim. Acta, Volume: 53, (1987), pp. 2195-2204 Maxwell, J.C., "On the dynamical theory of gases", Phil. Trans. R. Soc. London, Volume: 157, (1867), pp. 49-88 Melnik, O., "Dynamics of two-phase conduit flow of high viscosity gas-saturated magma: large variations of sustained explosive eruptions intensity", Bull. Volcanol., Volume: 62, (2001), pp. 153-170 Melnik, O., Sparks R.S.J., "Nonlinear dynamics of lava dome extrusion", Nature, Volume: 40, (1999), pp. 37-41 Middlemost, E.A.K., "Iron oxidation ratios, norms and the classification of volcanic rocks", Chem. Geol., Volume: 77, (1989), pp. 19-26 CrossRef Neri, A., Papale P., Macedonio G., "The role of magma composition and water content in esplosive eruptions: II. Pyroclastic dispersion dynamics", J. Volcanol. Geotherm. Res., Volume: 87, (1998), pp. 95-115 Bibliographic Page Full text Neri, A., Papale P., Del Seppia D., Santacroce R., "Couplet conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius", J. Volcanol. Geotherm. Res., Volume: 120, (2003), pp. 141-160 Bibliographic Page Full text Ongaro, T., Neri A., Todesco M., Macedonio G., "Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. II. Analysis of flow variables", Bull. Volcanol., Volume: 64, (2002), pp. 178-191 CrossRef Papale, P., "Thermodynamic modelling of the solubility of H2O and CO2 in silicate liquids", Contrib. Mineral. Petrol., Volume: 126, (1997), pp. 237-251 Bibliographic Page Full text Papale, P., "Strain-induced magma fragmentation in explosive eruptions", Nature, Volume: 397, (1999), pp. 425-428 CrossRef Papale, P., "Modeling of the solubility of a two-component H2O+CO2 fluid in silicate liquids", Am. Mineral., Volume: 84, (1999), pp. 477-492 Papale, P., "The dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and non-equilibrium pumice degassing", J. Geophys. Res., Volume: 106, (2001), pp. 11043-11065 Papale, P., Dobran F., "Modeling the ascent of magma during the Plinian eruption of Vesuvius in AD 79", J. Volcanol. Geotherm. Res., Volume: 58, (1993), pp. 101-132 CrossRef Papale, P., Dobran F., "Magma flow along the volcanic conduit during the plinian and pyroclastic flow phases of the May 18, 1980, Mount St. Helens eruption", J. Geophys. Res., Volume: 99, (1994), pp. 4355-4373 Papale, P., Polacci M., "Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions", Bull. Volcanol., Volume: 60, (1999), pp. 583-594 Bibliographic Page Full text Papale, P., Neri A., Macedonio G., "The role of magma composition and water contents in explosive eruptions. I. Conduit ascent dynamics", J. Volcanol. Geotherm. Res., Volume: 87, (1998), pp. 75-93 Bibliographic Page Full text Pinel, Pinel, V., Jaupart, C., 2003. Magma chamber behavior beneath a volcanic edifice. J. Geophys. Res. 102, DOI 10.1029/2002JB001751. Polacci, M., Papale P., Rosi M., "Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics", Bull. Volcanol., Volume: 63, (2001), pp. 83-97 CrossRef Polacci, Polacci, M., Pioli, L., Rosi, M., 2003. The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull. Volcanol. 65, 418–432, DOI 10.1007/S00445-002-0268-4. Romano, C., Giordano, D., Papale, P., Mincione, V., Hess, K.U., Dingwell, D.B., Rosi, M., 2003. The viscosities of hydrous melts from Vesuvius and Phlegrean Fields systems. Chem. Geol., in press. Rosi, Rosi, M., Landi, P., Polacci, M., Di Muro, A., Zandomeneghi, D., 2003. Role of conduit shear on ascent of the crystal-rich magma feeding the 800 yr BP Plinian eruption of Quilotoa Volcano (Ecuador). Bull. Volcanol., DOI 10.1007/S00445-003-0312-Z. Signorelli, S., Vaggelli G., Francalanci L., Rosi M., "Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields Italy: constraints based on matrix-glass and glass-inclusion compositions", J. Volcanol. Geotherm. Res., Volume: 91, (1999), pp. 199-220 Bibliographic Page Full text Signorelli, S., Vaggelli G., Romano C., Carroll M.R., "Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusions and matrix glasses", Contrib. Mineral. Petrol., Volume: 140, (2001), pp. 543-553 Sigurdsson, H., 2000. Introduction. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic press, San Diego, CA, pp. 1–13. Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer H., Stix J., 2000. Encyclopedia of Volcanoes. Academic press, San Diego, CA. Tammann, G., Hesse W., "Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten", Z. Anorg. Allg. Chem., Volume: 156, (1926), pp. 245-257 CrossRef Todesco, M., Neri A., Esposti Ongaro T., Papale P., Macedonio G., Santacroce R., Longo A., "Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modelling. Large-scale dynamics", Bull. Volcanol., Volume: 64, (2002), pp. 155-177 Vogel, D.H., "Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten", Phys. Z., Volume: 22, (1921), pp. 645-646 Webb, S.L., Dingwell D.B., "Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt and nephelinite", J. Geophys. Res., Volume: 95, (1990), pp. 15695-15701 Wilson, C.J.N., Houghton, B.F., 2000. Pyroclastic transport and deposition. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, CA, pp. 545–554.en
dc.description.fulltextpartially_openen
dc.contributor.authorPolacci, M.en
dc.contributor.authorPapale, P.en
dc.contributor.authorDel Seppia, D.en
dc.contributor.authorGiordano, D.en
dc.contributor.authorRomano, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, University of Munich, Munich , Germany - Dipartimento di Scienze Geologiche, Università Roma Tre, Rome , Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Rome , Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptDipartimento di Scienze della Terra, Università di Torino-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.orcid0000-0003-3318-8700-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.orcid0000-0003-1271-5516-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
947 Polacci et al .pdf445.07 kBAdobe PDF
Elsevier.html520 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

25
checked on Feb 10, 2021

Page view(s) 50

232
checked on Apr 24, 2024

Download(s)

76
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric