Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Vicari, A.*
Ciraudo, A.*
Del Negro, C.*
Fortuna, L.*
Title: Lava flow simulations using discharge rates from thermal
Title of journal: Natural Hazard
Publisher: springer
Issue Date: 2008
DOI: 10.1007/s11069-008-9306-7
Keywords: Lava flow simulation
2006 Etna eruption
Abstract: Techniques capable of measuring lava discharge rates during an eruption are important for hazard prediction, warning, and mitigation. To this end, we developed an automated system that uses thermal infrared satellite MODIS data to estimate time-averaged discharge rate. MODIS-derived time-varying discharge rates were used to drive lava flow simulations calculated using the MAGFLOW cellular automata model, allowing us to simulate the discharge rate-dependent spread of lava as a function of time. During the July 2006 eruption of Mount Etna (Sicily, Italy), discharge rates were estimated at regular intervals (i.e., up to 2 times/day) using the MODIS data. The eruption lasted 10 days and produced a *3-km-long lava flow field. Time-averaged discharge rates extracted from 13 MODIS images were utilized to produce a detailed chronology of lava flow emplacement, demonstrating how infrared satellite data can be used to drive numerical simulations of lava flow paths during an ongoing eruptive event. The good agreement between simulated and mapped flow areas indicates that model-based inundation predictions, driven by timevarying discharge rate data, provide an excellent means for assessing the hazard posed by ongoing effusive eruptions.
Appears in Collections:04.08.08. Volcanic risk
05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
Vicari et al 2008 NH1.pdfMain article537.43 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA