Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4520
DC FieldValueLanguage
dc.contributor.authorallMazot, A.; Department of Earth and Environmental Sciences, CP 160/02, Université Libre de Bruxelles, 50 Ave. Roosevelt, 1050 Brussels, Belgiumen
dc.contributor.authorallBernard, A.; Department of Earth and Environmental Sciences, CP 160/02, Université Libre de Bruxelles, 50 Ave. Roosevelt, 1050 Brussels, Belgiumen
dc.contributor.authorallFischer, T.; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USAen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallSutawidjaja, I. S.; Directorate of Volcanology and Geological Hazard Mitigation, Jalan Diponegoro 57, Bandung 40122, Indonesiaen
dc.date.accessioned2008-12-09T09:53:07Zen
dc.date.available2008-12-09T09:53:07Zen
dc.date.issued2008-06-27en
dc.identifier.urihttp://hdl.handle.net/2122/4520en
dc.description.abstractPapandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/178(2008)en
dc.subjectPapandayan volcanoen
dc.subjectIndonesiaen
dc.subjectphreatic eruptionen
dc.subjecthydrothermal systemen
dc.subjectfluid geochemistryen
dc.subjectadvanced argillic alterationen
dc.subjectgas geochemistryen
dc.titleChemical evolution of thermal waters and changes in the hydrothermal system of Papandayan volcano (West Java, Indonesia) after the November 2002 eruptionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber276-286en
dc.identifier.URLhttp://www.elsevier.com/wps/find/homepage.cws_homeen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1016/j.jvolgeores.2008.06.022en
dc.relation.referencesArribas, A.J., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly,W.C., Podwysocki,M.H.,McKee, E.H., Tosdal, R.M., 1995. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology 90, 795–822. Asmoro, P., Wachyundin, D., Mulyadi, E., 1989. Geological map of Papandayan volcano, Garut, West Java. Directorate of Volcanology, Bandung. Ball, J.W., Nordstrom, D.K.,1991.WATEQ4f— user's manual with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geological Survey Open-File Report 90–129 185 pp. Bernard, A., Escobar, C.D., Mazot, A., Guttierrez, R.E., 2004. The acid crater lake of Santa Ana volcano, El Salvador. Geological Society of America Special Paper 375, 121–133. BVGN, 1998. Bulletin of Global Volcanism Network 23, 07 http//volcano.si.edu/reports/ usgs. BVGN, 2002. Bulletin of Global Volcanism Network 27, 11 http//volcano.si.edu/reports/ usgs. BVGN, 2003. Bulletin of Global Volcanism Network 28, 07 http//volcano.si.edu/reports/ usgs. Christenson, B., Wood, C.P., 1993. Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bulletin of Volcanology 55, 547–565. Delmelle, P., Bernard, A.,1994. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochemica et Cosmochimica Acta 58 (11), 2445–2460. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M., 2002. Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochimica et Cosmochimica Acta 66 (6), 963–981. Fischer, T.P., Sturchio, N.C., Stix, J., Arehart, G.B., Counce, D., Williams, S.N., 1997. The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. Journal of Volcanology and Geothermal Research 77, 229–253. Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology 87, 1927–1944. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: R.W., S., R.I., T. (Eds.), Monitoring and Mitigation of Volcano Hazards, Berlin, pp. 221–256. Giggenbach,W.F., Garcia, P.N., Londono, C.A., Rodriguez, V.L., Rojas, G.N., Calvache, V.M.L., 1990. The chemistry of fumarolic vapor and thermal-spring discharges from the Nevado del Ruiz volcanic–magmatic–hydrothermal system, Colombia. Journal of Volcanology and Geothermal Research 42, 13–39. Giggenbach, W.F., Goguel, R.L., 1989. Methods for the collection and analysis of geothermal and volcanic water and gas samples. CD 2387. Department of scientific and industrial research, chemistry devision. Giggenbach, W.F., Tedesco, D., Sulistiyo, Y., Caprai, A., Cioni, R., Favara, R., Fischer, T.P., Hirabayashi, J.-I., Korzhinsky, M., Martini, M., Menyailov, I., Shinohara, H., 2001. Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia. Journal of Volcanology and Geothermal Research 108, 157–172. Hemley, J.J., Montoya, J.W., Marinenko, J.W., Luce, R.W., 1980. Equilibria in the system Al2O3–SiO2–H2O and some general implications for alteration/mineralization processes. Economic Geology 75, 210–228. Hedenquist, J.W., Arribas, A.J., Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology 93 (4), 373–404. Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N.C., Giggenbach, W.F., Aoki, M., 1994. Geology, geochemistry, and origin of high sulfidation Cu–Au mineralization in the Nansatsu District, Japan. Economic Geology 89 (1), 1–30. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Computers & Geosciences 18 (7), 899–947. Kiyosu, Y., Kurahashi, M., 1983. Origin of sulfur species in acid sulfate-chloride thermal waters, northeastern Japan. Geochimica et Cosmochimica Acta 47, 1237–1245. Kusakabe, M., Komoda, Y., 1992. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide at hydrothermal temperatures. Geological Survey of Japan Report 279, 93–96. Marumo, K., 1989. Genesis of kaolin minerals and pyrophyllite in Kuroko deposits of Japan: implications for the origins of the hydrothermal fluids from mineralogical and stable isotope data. Geochimica et Cosmochimica Acta 53, 2915–2924. Murowchick, J.B., Barnes, H.L., 1986. Marcasite precipitation from hydrothermal solutions. Geochimica et Cosmochimica Acta 50, 2615–2629. Neuman van Padang, M., 1951. Indonesia. Catalogue of the Active Volcanoes of the World, vol. 1. IAVCEI, Rome, pp. 1–271. Nogami, K., Hirabayashi, J.-I., Ohba, T., Yoshiike, Y., 2000. The 1997 phreatic eruption of Akita–Yakeyama volcano, northeast Japan: insight into the hydrothermal processes. Earth Planets Space 52, 229–236. Ohba, T., Hirabayashi, J.-I., Nogami, K., 1994.Water, heat and chloride budgets of the crater lake, Yugama at Kusatsu–Shirane volcano, Japan. Geochemical Journal 28, 217–231. Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, (third edition). Wiley &Sons, New York, pp. 517–611. Ohsawa, S., Takano, B., Kusakabe, M.,Watanuki, K., 1993. Variation in volcanic activity of Kusatsu–Shirane volcano as inferred from δ34S in sulfate from the Yugama crater lake. Bulletin of the Volcanological Society of Japan 38, 95–99. Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC— a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 pp. Reyes, A.G., 1990. Petrology of Philippines geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research 43, 279–309. Stoffregen, R., Alpers, C.N., Jambor, J.L., 2000. Alunite–jarosite cristallography, thermodynamics, and geochronology. In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (Eds.), Sulfate Minerals— Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy & Geochemistry. The Mineralogical Society of America, Washington, pp. 453–480. Takano, B.,Watanuki, K., 1990. Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulfur oxyanions. Journal of Volcanology and Geothermal Research 40, 71–87. Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Aurora Armienta, M., Macias, J.L., 1998. Geochemistry of the volcano-hydrothermal system of El Chichon Volcano, Chiapas, Mexico. Bulletin of Volcanology 59, 436–449. Taran, Y., Pokrovsky, B., Dubik, Y.M., 1989. Isotopic composition and origin of water from andesitic magmas. Doklady (Translations) Academy of Science USSR 304, 401–404. Taran, Y.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., 1995. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochemica et Cosmochimica Acta 59 (9), 1749–1761. Tassi, F., Vaselli, O., Cappaccioni, B., Macias, J.L., Nencetti, A., Montegrossi, G., Magro, G., 2003. Chemical composition of fumarolic gases and spring discharges from El Chichon volcano, Mexico: causes and implications of the changes detected over the period 1998–2000. Journal of Volcanology and Geothermal Research 123, 105–121. Valentino, G.M., Cortecci, G., Franco, E., Stanzione, D., 1999. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy. Journal of Volcanology and Geothermal Research 91, 329–344. Varekamp, J.C., Kreulen, R., 2000. The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. Journal of Volcanology and Geothermal Research 97, 309–327. Varekamp, J.C., Pasternack, G.B., Rowe, G.L., 2000. Volcanic Lake systematics II. Chemical constraints. Journal of Volcanology and Geothermal Research 97, 161–180. Wright, H.M.N., Cashman, K.V., Rosi, M., Cioni, R., 2007. Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bulletin of Volcanology 69, 281–300. Yilmaz, H., 2003. Exploration at the Kuscaryiri Au (Cu) prospect and its implications for porphyry-related mineralization in western Turkey. Journal of Geochemical Exploration 77, 133–150. 286 A. Mazot et al. / Journal of Volcanology and Geothermal Research 178 (2008) 276–286en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMazot, A.en
dc.contributor.authorBernard, A.en
dc.contributor.authorFischer, T.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorSutawidjaja, I. S.en
dc.contributor.departmentDepartment of Earth and Environmental Sciences, CP 160/02, Université Libre de Bruxelles, 50 Ave. Roosevelt, 1050 Brussels, Belgiumen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, CP 160/02, Université Libre de Bruxelles, 50 Ave. Roosevelt, 1050 Brussels, Belgiumen
dc.contributor.departmentDepartment of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDirectorate of Volcanology and Geological Hazard Mitigation, Jalan Diponegoro 57, Bandung 40122, Indonesiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Geofisica, UNAM, Mexico-
crisitem.author.deptUniversité Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDirectorate of Volcanology and Geological Hazard Mitigation, Jalan Diponegoro 57, Bandung 40122, Indonesia-
crisitem.author.orcid0000-0002-4419-5618-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mazot et al_JVGR2088.pdfMain Article1.87 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

17
checked on Feb 7, 2021

Page view(s) 50

211
checked on Apr 24, 2024

Download(s)

25
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric