Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/436
DC FieldValueLanguage
dc.contributor.authorallScarpetta, S.; Università di Salerno, INFM & Dipartimento di Fisica “E. R. Caianiello”en
dc.contributor.authorallGiudicepietro, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallEzin, E. C.; International Institute for Advanced Scientific Studies, Vietri sul Mareen
dc.contributor.authorallPetrosino, S.; Institut de Mathematiques et de Sciences Physiques, Beninen
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMartini, M.; Institut de Mathematiques et de Sciences Physiques, Beninen
dc.contributor.authorallMarinaro, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2005-09-29T18:06:29Zen
dc.date.available2005-09-29T18:06:29Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/436en
dc.description.abstractWe present a new strategy for reliable automatic classification of local seismic signals and volcano-tectonic earthquakes (VT). The method is based on a supervised neural network in which a new approach for feature extraction from short period seismic signals is applied. To reduce the number of records required for the analysis we set up a specialized neural classifier, able to distinguish two classes of signals, for each of the selected stations. The neural network architecture is a multilayer perceptron (MLP) with a single hidden layer. Spectral features of the signals and the parameterized attributes of their waveform have been used as input for this network. Feature extraction is done by using both the linear predictor coding technique for computing the spectrograms, and a function of the amplitude for characterizing waveforms. Compared to strategies that use only spectral signatures, the inclusion of properly normalized amplitude features improves the performance of the classifiers, and allows the network to better generalize. To train the MLP network we compared the performance of the quasi-Newton algorithm with the scaled conjugate gradient method. We found that the scaled conjugate gradient approach is the faster of the two, with quite equally good performance. Our method was tested on a dataset recorded by four selected stations of the Mt. Vesuvius monitoring network, for the discrimination of low magnitude VT events and transient signals caused by either artificial (quarry blasts, underwater explosions) and natural (thunder) sources. In this test application we obtained 100% correct classification for one of the possible pairs of signal types (VT versus quarry blasts). Because this method was developed independently of this particular discrimination task, it can be applied to a broad range of other applications.en
dc.format.extent469 bytesen
dc.format.extent1473591 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofBulletin of the seismological society of Americaen
dc.relation.ispartofseries95, 1en
dc.subjectSeismic signalsen
dc.subjectVesuviusen
dc.subjectAutomatic classificationen
dc.subjectVolcano-tectonic earthquakesen
dc.titleAutomatic Classification of Seismic Signals at Mt. Vesuvius Volcano, Italy, Using Neural Networksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber185-196en
dc.identifier.URLhttp://bssa.geoscienceworld.org/en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1785/0120030075en
dc.relation.referencesBishop, C. (1995). Neural networks For Pattern Recognition, Oxford Univ. Press. Castellano, M., C. Buonocunto, M. Capello, and M. La Rocca (2002). Seismic surveillance of active volcanoes: the Osservatorio Vesuviano Seismic Network (OVSN Southern Italy), Seism. Res. Lett. 73, 177–184. Chouet, B. A. (1992). A seismic model for the source of long-period events and harmonic tremor, in Volcanic Seismology, P. Gasparini, R. Scarpa, and K. Aki (Editors), IAVCEI Proceedings in Volcanology, Vol. 3, Springer-Verlag, Berlin, 23 pp. Del Pezzo, E., and S. Petrosino (2001). A local-magnitude scale for Mt. Vesuvius from synthetic Wood-Anderson seismograms, J. Seism. 5, 207–215. Del Pezzo, E., F. Bianco, and G. Saccorotti (2004). Seismic source dynamics at Mt. Vesuvius volcano, Italy. J. Volcanol. Geoth. Res. 133, 23–39. Del Pezzo, E., A. Esposito, F. Giudicepietro, M. Marinaro, M. Martini, and S. Scarpetta (2003). Discrimination of earthquakes and underwater explosions using neural networks, Bull. Seism. Soc. Am. 93, 215–223. Esposito, A., M. Falanga, M. Funaro, M. Marinaro, and S. Scarpetta (2001). Signal Classification using Neural Networks, in Proceedings of WIRN ’01 (Workshop Italiano Reti Neurali) 17–19 May 2001, Vietri, pp. 187–1192. Falsaperla, S., S. Graziani, G. Nunnari, and S. Spampinato (1996). Automatic classification of volcanic earthquakes by using multi-layered neural networks, Natural Hazards 13, 205–228. Fedorenko, Y., E. S. Husebye, and B. O. Ruud (1999). Explosion site recognition: neural net discriminator using single three-component stations, Phys. Earth Planet. Interiors 113, 131–142. Gendron, P., J. Ebel, and D. Manolakis (2000). Rapid joint detection and classification with wavelet bases via bayes Theorem, Bull. Seism. Soc. Am. 90, 764–774. Giudicepietro, F., W. De Cesare, M. Martini, and V. Meglio, (2000). Il Sistema Sismometrico Modulare Integrato (SISMI). Open-File Report Osservatorio Vesuviano INGV, no. 6, 2000 (in Italian). Hertz, J., A. Krogh, and G. Richard (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City. Hoffmann, W., R. Kebeasy, and P. Firbas (1999). Introduction to the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, Phys. Earth Planet. Int. 113, 5–9. Joswig, M. (1990). Pattern recognition for earthquake detection, Bull. Seism. Soc. Am. 80, 170–186. Kushnir, A. F., V. M. Lapshin, V. I. Pinsky, and J. Fyen (1990). Statistically optimal event detection using small array data, Bull. Seism. Soc. Am. 80, 1934–1950. Kushnir, A. F., E. V. Troitsky, L. M. Haikin, and A. Dainty (1999). Statistical classification approach to discrimination between weak earthquakes and quarry blasts recorded by the Israel Seismic Network, Phys. Earth Planet. Int. 113, 161–182. Makhoul, J. (1975). Linear Prediction: A Tutorial Review, in Proceedings of the IEEE 63. Marzocchi, W., G. Vilardo, D. P. Hill, G. P. Ricciardi, and C. Ricco (2001). Common features and peculiarity of the seismic activity at Phlegraean Fields, Long Valley, and Vesuvius. Bull. Seism. Soc. Am. 91, 191–205. Moller, M. (1993). A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6, 525–533. Musil, M., and A. Plesinger (1996). discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and kohonen maps, Bull. Seism. Soc. Am. 86, 1077–1090. Saccorotti, G., R. Maresca, and E. Del Pezzo (2001). Array analyses of seismic noise at Mt. Vesuvius volcano, Italy, J. Volcanol. Geotherm. Res. 110, 79–100. Shewchuk, J. R. (1994). An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Technical Report CMU-CS-94-125, Carnegie Mellon University, Pittsburgh. Shumway, R.H. (1996). Statistical Approaches to Seismic Discrimination, in Monitoring a Comprehensive Test Ban Treaty, E. S. Husebye and A. M. Dainty (Editors), NATO Advanced Science Institute Series, Kluwer Academic Publishers, Boston, 791–803. Tarvainen, M. (1999). Recognizing explosion sites with a self-organizing network for unsupervised learning, Phys. Earth Planet. Int. 113, 143–154 Ursino, A., H. Langer, L. Scarfı`, G. Di Grazia, and S. Gresta (2001). Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily), Annali di Geofisica 44, 703–722. Van Ooyen, A., and B. Nienhuis (1992). Improving the convergence of the backpropagation algorithm, Neural Networks 5, 465–471. Wuster, J. (1993). Discrimination of chemical explosions and earthquakes in central europe—a case study, Bull. Seism. Soc. Am. 83, 1184–1212.en
dc.description.fulltextopenen
dc.contributor.authorScarpetta, S.en
dc.contributor.authorGiudicepietro, F.en
dc.contributor.authorEzin, E. C.en
dc.contributor.authorPetrosino, S.en
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorMartini, M.en
dc.contributor.authorMarinaro, M.en
dc.contributor.departmentUniversità di Salerno, INFM & Dipartimento di Fisica “E. R. Caianiello”en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInternational Institute for Advanced Scientific Studies, Vietri sul Mareen
dc.contributor.departmentInstitut de Mathematiques et de Sciences Physiques, Beninen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInstitut de Mathematiques et de Sciences Physiques, Beninen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale per la Fisica della Materia Sezione di Salerno and Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Salerno, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptInternational Institute for Advanced Scientific Studies, Vietri sul Mare-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6198-8655-
crisitem.author.orcid0000-0002-5042-0244-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0001-9934-9218-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
bssa.htmRedirect - bssa469 BHTMLView/Open
185.pdf355.22 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

90
checked on Feb 10, 2021

Page view(s) 50

237
checked on Apr 24, 2024

Download(s) 5

1,026
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric