Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3857
DC FieldValueLanguage
dc.contributor.authorallBlanco-Montenegro, I.; Departamento de Fisica, Universidad de Burgos, Avda. de Cantabria s/n, 09006 Burgos, Spainen
dc.contributor.authorallNicolosi, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPignatelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2008-05-15T08:42:03Zen
dc.date.available2008-05-15T08:42:03Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3857en
dc.description.abstractEl Hierro is the youngest of the Canary Islands, a volcanic archipelago in the central Atlantic, near the African coast. The subaerial part of the island shows the characteristic shape of three convergent ridges that has been interpreted as a triple-arm rift system. At least four giant landslides formed wide, horseshoe embayments that separate these ridges. Recent studies based on high-resolution bathymetry, however, showed that the submarine rift structure is much more complex. We analysed an aeromagnetic anomaly data set acquired in 1993 by the Spanish National Geographic Institute in order to obtain a structural model of the island from a magnetic point of view. A digital elevation model of the volcanic edifice was divided into a mesh of prismatic cells, each of them with a top corresponding to the topographic height (or bathymetric depth in the marine area) and a bottom at a constant depth of 4000 m below sea level. A three-dimensional (3-D) inversion algorithm and forward modelling along representative profiles provided us with a magnetization distribution containing valuable information about the inner structure of the island. The magnetic model cast new light on the rift structure of El Hierro. In particular, high magnetization values have been mainly interpreted as intrusive complexes on which rift zones are rooted. Their location confirms the hypothesis of a complex rift structure in the marine area. The inverse magnetization that characterizes the NE submarine rift area implies that this part of the volcanic edifice formed during the Matuyama and, therefore, predates the NW submarine rift zone, which is normally magnetized. The N–S rift zone extending southwards from the island seems to be shifted to the west with respect to the bathymetric high in this area. This result suggests that the original rift zone was located in the area where the highest magnetizations presently occur so that the present morphology may reflect the westward collapse of the original ridge. In addition, very low magnetizations characterize the areas affected by giant landslides, indicating that magnetic anomalies can provide important constraints on the distribution of these catastrophic events.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/ 173 (2008)en
dc.subjectInverse theoryen
dc.subjectMagnetic anomaliesen
dc.subjectmodelling and interpretationen
dc.subjectOceanic hotspots and intraplate volcanismen
dc.subjectCrustal structureen
dc.subjectAtlantic Oceanen
dc.titleMagnetic imaging of the feeding system of oceanic volcanic islands: El Hierro (Canary Islands)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber339-350en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.identifier.doi10.1111/j.1365-246X.2008.03723.xen
dc.relation.referencesAbdel-Monem, A.,Watkins,N.D.&Gast, P.W., 1972. Potassium-Argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and Hierro, Am. J. Sci., 272, 805–825. Ablay, G.J. & H¨urlimann, M., 2000. Evolution of the north flank of Tenerife by recurrent giant landslides, J. Volcanol. Geotherm. Res., 103, 135–159. Ancochea, E., Hern´an, F., Cendrero, A., Cantagrel, J.M., F´uster, J.M., Ibarrola, E. & Coello, J., 1993. Constructive and destructive episodes in the building of a young oceanic island, La Palma, Canary Islands and genesis of the Caldera de Taburiente, J. Volcanol. Geotherm. Res., 60, 243–262. Ancochea, E., Hern´an, F., Huertas, M.J., Br¨andle, J.L.&Herrera, R., 2006.A new chronostratigraphical and evolutionary model for La Gomera: implications for the overall evolution of the Canarian Archipelago, J. Volcanol. Geotherm. Res., 157, 271–293. Anguita, F.&Hern´an, F., 2000. The Canary Islands origin: a unifying model, J. Volcanol. Geotherm. Res., 103, 1–26. Akima, H., 1970. A new method of interpolation and smooth curve fitting based on local procedures, J. A.C.M., 17, 589–602. Ara˜na,V., Camacho, A.G., Garc´ıa, A., Montesinos, F.G., Blanco, I.,Vieira, R. & Felpeto, A., 2000. Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic and volcanological data, J. Volcanol. Geotherm. Res., 103, 43–64. Baranov, V. & Naudy, H., 1964. Numerical calculation of the formula of reduction to the magnetic pole, Geophysics, 29, 67–79. Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications, 441 pp., Cambridge Univ. Press, New York. Blanco-Montenegro, I., 1997. An´alisis e interpretaci´on de las anomal´ıas magn´eticas de tres calderas volc´anicas: Decepci´on (Shetland del Sur, Ant´artida), Furnas (S. Miguel, Azores) y Las Ca˜nadas del Teide (Tenerife, Islas Canarias), PhD thesis, Universidad Complutense de Madrid (Spain). Blanco-Montenegro, I., Torta, J.M., Garc´ıa, A. & Ara˜na, V., 2003. Analysis and modelling of the aeromagnetic anomalies of Gran Canaria (Canary Islands), Earth Planet. Sci. Lett., 206, 601–616. Blanco-Montenegro, I., Montesinos, F.G., Garc´ıa, A., Vieira, R. & Villala´ın, J.J., 2005. Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: implications for the early history of the Canary Islands, J. geophys. Res., 110, B12102, doi:10.1029/2005JB003668. Blanco-Montenegro, I., De Ritis, R. & Chiappini, M., 2007. Imaging and modelling the subsurface structure of volcanic calderas with highresolution aeromagnetic data at Vulcano (Aeolian Islands, Italy), Bull. Volcanol., 69, 643–659, doi: 10.1007/s00445-006-0100-7. Bosshard, E. & MacFarlane, D.J., 1970. Crustal structure of the Western Canary Islands from seismic refraction and gravity data, J. geophys. Res., 75, 4901–4918. Caratori Tontini, F., Cocchi, L. & Carmisciano, C., 2006. Depth-to-thebottom optimization for magnetic data inversion: magnetic structure of the Latium volcanic region, Italy, J. geophys. Res., 111, B11104, doi:10.1029/2005JB004109. Carracedo, J.C., 1994. The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes, J. Volcanol. Geotherm. Res., 60, 225–241. Carracedo, J.C., 1999. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes, J. Volcanol. Geotherm. Res., 94, 1–19. Carracedo, J.C., Day, S.J., Guillou, H. & P´erez-Torrado, F.J., 1999. Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands, J. Volcanol. Geotherm. Res., 94, 169–190. Carracedo, J.C., Badiola, E.R., Guillou, H., de la Nuez, J. & P´erez-Torrado, F.J., 2001. Geology and volcanology of La Palma and El Hierro, Western Canary Islands, Estud. Geol., 57, 175–273. Carracedo, J.C. et al., 2002. Cenozoic volcanism II: the Canary Islands, in The Geology of Spain, pp. 439–472, eds Gibbons,W. and Moreno, T., The Geological Society of London, London. Coello, J. et al., 1992. Evolution of the eastern volcanic ridge of the Canary Islands base don new K-Ar data, J. Volcanol. Geotherm. Res., 53, 251– 274. Day, S.J., Carracedo, J.C. & Guillou, H., 1997. Age and geometry of an aborted rift collapse: the San Andres fault system, El Hierro, Canary Islands, Geol. Mag., 134, 523–537. Fedi, M. & Rapolla, A., 1999. 3-D inversion of gravity and magnetic data with depth resolution, Geophysics, 64, 452–460. Fiske, R.S. & Jackson, E.D., 1972. Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses, Proc. R. Soc. Lond., A329, 299–326. F´uster, J.M., Hern´an, F., Cendrero, A., Coello, J., Cantagrel, J.M., Ancochea, E. & Ibarrola, E., 1993. Geocronolog´ıa de la isla de El Hierro (Islas Canarias), Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.), 88, 85–97. Garcia, M.O.&Davis, M.G., 2001. Submarine growth and internal structure of ocean island volcanoes based on submarine observations of Mauna Loa volcano, Hawaii, Geology, 29, 163–166. Gee, M.J.R.,Watts, A.B., Masson, D.G.&Mitchell, N.C., 2001a. Landslides and the evolution of El Hierro in the Canary Islands, Mar. Geol., 177, 271– 293. Gee, M.J.R., Masson, D.G., Watts, A.B. & Mitchell, N.C., 2001b. Offshore continuation of volcanic rift zones, El Hierro, Canary Islands, J. Volcanol. Geotherm. Res., 105, 107–119. Guillou, H., Carracedo, J.C., P´erez-Torrado, F. & Rodr´ıguez Badiola, E., 1996. K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands, J. Volcanol. Geotherm. Res., 73, 141–155. Guillou, H., Carracedo, J.C., Paris, R. & P´erez Torrado, F.J., 2004. Implications for the early shiedl-stage evolution of Tenerife form K/Ar ages and magnetic stratigraphy, Earth Planet. Sci. Lett., 222, 599–614. Hayling, K.L. & Harrison, C.G.A., 1986. Magnetization modeling in the north and equatorial Atlantic ocean using MAGSAT data, J. geophys. Res., 91, 12 423–12 443. Hern´andez-Pacheco, A., 1982. Sobre una posible erupci´on en 1793 en la isla de El Hierro (Canarias), Estud. Geol., 38, 15–25. Hildenbrand, T.G., Rosenbaum, J.G. & Kauahikaua, J.P., 1993. Aeromagnetic study of the island of Hawaii, J. geophys. Res., 98, 4099– 4119. Hoernle, K., Yang, Y.S. & Graham, D., 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe, Nature, 374, 34–39. Holcomb, R.T. & Searle, R.C., 1991. Large landslides from oceanic volcanoes, Mar. Geotechnol., 10, 19–32. IAGA Div. V, Working Group 8, 1996. International geomagnetic reference field, 1995 revision, Geophys. J. Int., 125, 318–321. Jackson, D.D., 1972. Interpretation of inaccurate, insufficient and inconsistent data, Geophys. J. Roy. Astron. Soc., 28, 97–109. Jones, J.G., 1966. Intraglacial volcanoes of South-West Iceland and their significance in the interpretation of the formof the marine basaltic volcanoes, Nature, 212, 586–588. Krastel, S., Schmincke, H.-U., Jacobs, C.L., Rihm, R., Le Bas, T.P.&Alib´es, B., 2001. Submarine landslides around the Canary Islands, J. geophys. Res., 106, 3977–3997. Le Bas, M.J., Rex, D.C.&Stillman, C.J., 1986. The early magmatic chronology of Fuerteventura, Canary Islands, Geol. Mag., 123, 287–298. L´enat, J.-F., Gibert-Malengreau, B. & Galdeano, A., 2001. A new structural model for the evolution of the volcanic island of R´eunion (Indian Ocean), J. geophys. Res., 106(B5), 8645–8663. Li,Y.&Oldenburg,D.W., 1996. 3-D inversion of magnetic data, Geophysics, 61, 394–408. MacDonald, G.A., 1949. Petrography of the island of Hawaii, U.S. Geol. Surv. Prof. Pap. 214-D. McDougall, I. & Schmincke, H.-U., 1976. Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases, Bull. Volcanol., 40, 57–77. Masson,D.G., 1996. Catastrophic collapse of the volcanic island of El Hierro 15 ka ago and the history of landslides in the Canary Islands, Geology, 24, 231–234. Masson, D.G.,Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P.&Canals, M., 2002. Slope failures on the flanks of thewestern Canary Islands, Earth-Sci. Rev., 57, 1–35. Mitchell, N.C., Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., 2002. The morphology of the submarine flanks of volcanic ocean islands. A comparative study of the Canary andHawaiian hotspot islands, J.Volcanol. Geotherm. Res., 115, 83–107. Mitchell, N.C., Dade, W.B. & Masson, D.G., 2003. Erosion of the submarine flanks of the Canary Islands, J. geophys. Res., 108(F1), 6002, doi:10.1029/2002JF000003. Montelli, R., Nolet, G., Dahlen, F., Masters, G., Engdahl, E.R. & Hung, S.H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338–343. Montesinos, F.G., Arnoso, J., Benavent, M. & Vieira, R., 2006. The crustal structure of El Hierro (Canary Islands) from 3-D gravity inversion, J. Volcanol. Geotherm. Res., 150, 283–299. Moore, J.G. & Chadwick,W.W., 1995. Offshore geology of Mauna Loa and adjacent areas, Hawaii, in Mauna Loa Revealed: Structure, Composition, History and Hazards, pp. 21–44, eds Rhodes, J.M. & Lockwood, J.P., American Geophysical Union. M¨unn, S.,Walter, T.R. & Kl¨ugel, A., 2006. Gravitational spreading controls rift zones and flank instability on El Hierro, Canary Islands, Geol. Mag., 143, 257–268. Nicolosi, I., Blanco-Montenegro, I., Pignatelli, A. & Chiappini, M., 2006. Estimating the magnetization direction of crustal structures by means of an equivalent source algorithm, Phys. Earth Planet. Int., 155, 163– 169. Oyarzun, R., Doblas, M., L´opez-Ruiz, J. & Cebri´a, J.M., 1997. Opening of the central Atlantic and asymmetric mantle upwelling phenomena: implications for long-lived magmatism in western North Africa and Europe, Geology, 25, 727–730. Pignatelli, A., Nicolosi, I.&Chiappini, M., 2006.Analternative3Dinversion method for magnetic anomalies with depth resolution, Ann. Geophys., 49, 1047–1053. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, 994 pp., Cambridge Univ. Press, New York. Rasmussen, R. & Pedersen, L.B., 1979. End corrections in potential field modelling, Geophys. Prosp., 27, 749–760. Roest, W.R., Da˜nobeitia, J.J., Verhoef, J. & Collette, B.J., 1992. Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the Central North Atlantic, Mar. Geophys. Res., 14, 1–24. Sharma, P.V., 1986. Geophysical Methods in Geology, 432 pp., Elsevier, Amsterdam. Smith, W.H.F. & Sandwell, D.T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, 1957–1962. Soc´ıas, I. & M´ezcua, J., 1996. Levantamiento aeromagn´etico del archipi´elago canario, Publicaci´on T´ecnica no. 35, 28 pp., Instituto Geogr ´afico Nacional, Madrid. Staudigel, H. & Schmincke, H.-U., 1984. The Pliocene seamount series of La Palma, Canary Islands, J. geophys. Res., 89, 11195–11215. Talwani, M. & Heirtzler, J.R., 1964. Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape, in Computers in the Mineral Industries, Part 1. Geological Sciences no. 9, pp. 464–480, ed. Parks G.A., Stanford Univ. Publ., Leedland, USA. Urgeles, R., Canals, M., Baraza, J., Alonso, B.&Masson,D., 1997. The most recent megalandslides of the Canary Islands: El Golfo debris avalanche and Canary debris flow, west El Hierro Island, J. geophys. Res., 102, 20 305–20323. Verhoef, J., Collette, B.J.,Da˜nobeitia, J.J., Roeser, H.A.&Roest,W.R., 1991. Magnetic anomalies offWest Africa (20–38◦ N), Mar. Geophys. Res., 13, 81–103. Walker, G.P.L., 1986. Koolau dike complex, Oahu: intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice, Geology, 14, 310–313. Walker, G.P.L., 1987. The dike comples of Koolau Volcano, Oahu: the internal structure of a Hawaiin rift zone, in Volcanism in Hawaii, pp. 961–993, eds Decker, R.W., Wright, T.L. and Stauffer, P.W., U.S. Geol. Surv. Prof. Paper 1350. Walker, G.P.L., 1990. Geology and volcanology of the Hawaiian Islands, Pacific Sci., 44, 315–347. Walker, G.P.L., 1992. “Coherent intrusion complexes” in large basaltic volcanoes – a newstructural model, J. Volcanol. Geotherm. Res., 50, 41–54. Walker, G.P.L., 1999. Volcanic rift zones and their intrusion swarms, J. Volcanol. Geotherm. Res., 94, 21–34. Walter, T.R., Troll, V.R., Cailleau, B., Belousov, A., Schmincke, H.-U., Amelung, F. & v.d. Bogaard, P., 2005. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands, Bull. Volcanol., 67, 281–291. Watkins, N.D., 1973. Palaeomagnetism of the Canary Islands and Madeira, Geophys. J. R. Astr. Soc., 32, 249–267. Watts, A.B., 1994. Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary Islands, Geophys. J. Int., 119, 648–666. Watts, A.B. & Masson, D.G., 1995. A giant landslide on the north flank of Tenerife, Canary Islands, J. geophys. Res., 100, 24487–24498. Won, I.J. & Bevis, M., 1987. Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines, Geophysics, 52, 232–238.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBlanco-Montenegro, I.en
dc.contributor.authorNicolosi, I.en
dc.contributor.authorPignatelli, A.en
dc.contributor.authorChiappini, M.en
dc.contributor.departmentDepartamento de Fisica, Universidad de Burgos, Avda. de Cantabria s/n, 09006 Burgos, Spainen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartamento de Física, Universidad de Burgos, Burgos, Spain.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-0711-9923-
crisitem.author.orcid0000-0002-3172-2044-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Blanco-Montenegro_et_al.pdf492.97 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

17
checked on Feb 10, 2021

Page view(s) 20

443
checked on Apr 24, 2024

Download(s)

32
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric