Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/360
DC FieldValueLanguage
dc.contributor.authorallAndò, B.; DEES, University of Catania, V.le A.Doria 6, 95125, Catania, Italyen
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2005-08-09T07:41:02Zen
dc.date.available2005-08-09T07:41:02Zen
dc.date.issued2004-05-12en
dc.identifier.urihttp://hdl.handle.net/2122/360en
dc.description.abstractGravity measurements are utilized at active volcanoes to detect mass changes linked to magma transfer processes and thus to recognize forerunners to paroxysmal volcanic events. Continuous gravity measurements are now increasingly performed at sites very close to active craters, where there is the greatest chance to detect meaningful gravity changes. Unfortunately, especially when used against the adverse environmental conditions usually encountered at such places, gravimeters have been proved to be affected by meteorological parameters, mainly by changes in the atmospheric temperature. The pseudo-signal generated by these perturbations is often stronger than the signal generated by actual changes in the gravity field. Thus, the implementation of well-performing algorithms for reducing the gravity signal for the effect of meteorological parameters is vital to obtain sequences useful from the volcano surveillance standpoint. In the present paper, a Neuro-Fuzzy algorithm, which was already proved to accomplish the required task satisfactorily, is tested over a data set from three gravimeters which worked continuously for about 50 days at a site far away from active zones, where changes due to actual fluctuation of the gravity field are expected to be within a few microgal. After accomplishing the reduction of the gravity series, residuals are within about 15μGal peak-to-peak, thus confirming the capabilities of the Neuro-Fuzzy algorithm under test of performing the required task satisfactorily.en
dc.format.extent265172 bytesen
dc.format.extent520 bytesen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries1-2/142(2004)en
dc.subjectGravimetersen
dc.subjectExogenous parameter compensationen
dc.subjectNeuro-Fuzzy algorithmen
dc.titleA test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parametersen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber11en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.identifier.doi10.1016/j.pepi.2003.12.006en
dc.relation.referencesAndò, B.; Carbone, D., "A methodology for reducing a continuously recording gravity meter for the effect of meteorological parameters" IEEE Trans. Instrum. Meas. 2001 pp. 1248-1254 CrossRef Baker, T.F., "Tidal deformations of the earth" Sci. Prog. 1984 pp. 197-233 Bonvalot, S.; Diament, M.; Gabalda, G., "Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones" Geophys. J. Int. 1998 pp. 470-494 CrossRef Budetta, G.; Carbone, D., "Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily" J. Volcanol. Geotherm. Res. 1997 pp. 199-214 Bibliographic Page Full Text Budetta, G.; Carbone, D., "Temporal variations in gravity at Mt Etna (Italy) associated with the 1989 and 1991 eruptions" Bull. Volcanol. 1998 pp. 311-326 Bibliographic Page Full Text Budetta, G.; Carbone, D.; Greco, F., "Subsurface mass redistribution at Mount Etna (Italy) during the 1995–96 explosive activity detected by microgravity studies" Geophys. J. Int. 1999 pp. 77-88 CrossRef Carbone, D.; Rymer, H., "Calibration shifts in a LaCoste & Romberg gravimeter: comparison with a Scintrex CG-3M" Geophys. Prosp. 1999 pp. 73-83 CrossRef Carbone, D.; Budetta, G.; Greco, F., "Possible mechanisms of magma redistribution under Mt. Etna during the 1994–1999 period detected through microgravity measurements" Geophys. J. Int. 2003 pp. 187-200 Bibliographic Page Full Text Carbone, D.; Budetta, G.; Greco, F.; Rymer, H., "Combined discrete and continuous gravity observations at Mt. Etna" J. Volcanol. Geotherm. Res. 2003 pp. 123-135 Bibliographic Page Full Text d’Oreye, N., Ducarme, B., Hendicks, M., Laurent, R., Somerhausen, A., Van Ruymbeke, M., 1994. Tidal gravity observations at Mount Etna volcano, In: Volcanic deformation and tidal gravity effects at Mt. Etna, Sicily. Final Rep. project no. ERB40002PL900491, pp. 60–80, EEC SCIENCE. Davis, P.M., 1981. Gravity and tilt earth tides measured on an active volcano, Mt Etna, Sicily. J. Volcanol. Geotherm. Res. 11, 213–223. CrossRef Doebelin, E.O., 1985. Measurement Systems: Applications and Design, 3rd ed. McGraw-Hill, New York. Eggers, A.A., "Temporal gravity and elevation changes at Pacaya volcano, Guatemala" J. Volcanol. Geotherm. Res. 1983 pp. 223-237 CrossRef El Wahabi, A.; Ducarme, B.; Van Ruymbeke, M.; d’Oreyè, N.; Somerhausen, A., "Continuous gravity observations at Mount Etna (Sicily) and correlations between temperature and gravimetric records" Cah. Centre Eur. Ge´odyn. Se´ismol. 1997 pp. 105-119 El Wahabi, A.; Dittfeld, H.J.; Simon, Z., "Meteorological influence on tidal gravimeter drift" Bull. Inf. Mare´es Terrestres 2000 pp. 10403-10414 Fernández, J.; Charco, M.; Tiampo, K.F.; Jentzsch, G.; Rundle, J.B., "Joint interpretation of displacement and gravity data in volcanic areas. A test example: Long Valley Caldera" Geophys. Res. Lett. 2001 pp. 1063-1066 CrossRef Goodkind, J.M., "Continuous measurement of nontidal variations of gravity" J. Geophys. Res. 1986 pp. 9124-9125 Hugill, A., 1990. The Scintrex CG-3M Autograv automated gravity meter, description and field results. In: SEG Conference, San Francisco. Jachens, R.C.; Eaton, G.P., "Geophysical observations of Kilauea volcano, Hawaii. 1. Temporal gravity variations related to the 29 November, 1975, M=7.2 earthquake and associated summit collapse" J. Volcanol. Geotherm. Res. 1980 pp. 225-240 CrossRef Jousset, P.; Dwipa, S.; Beauducel, F.; Duquesnoy, T.; Diament, M., "Temporal gravity at Merapi during the 1993–1995 crisis: an insight into the dynamical behaviour of volcanoes" J. Volcanol. Geotherm. Res. 2000 pp. 289-320 Bibliographic Page Full Text Ljung, L., 1987. System Identification: Theory for the User. Prentice Hall, Englewood Cliffs, NJ, 609 pp. Merriam, J.B., "Atmospheric pressure and gravity" Geophys. J. Int. 1992 pp. 488-500 Rymer, H.; Brown, G.C., "Causes of microgravity change at Poa´s volcano, Costa Rica: an active but non-erupting system" Bull. Volcanol. 1987 pp. 389-398 CrossRef Rymer, H.; Murray, J.B.; Brown, G.C.; Ferrucci, F.; McGuire, J., "Mechanisms of magma eruption and emplacement at Mt Etna between 1989 and 1992" Nature 1993 pp. 439-441 CrossRef Rymer, H.; Cassidy, J.; Locke, C.A.; Murray, J.B., "Magma movements in Etna volcano associated with the major 1991–1993 lava eruption: evidence from gravity and deformation" Bull. Volcanol. 1995 pp. 451-461 CrossRef Sanderson, T.J.O., "Direct gravimetric detection of magma movements at Mount Etna" Nature 1982 pp. 487-490 CrossRef Torge, W., 1989. Gravimetry. Walter de Gruyter, Berlin-New York, 465 pp. Valliant, H.D.; Gagnon, C.; Halpenny, J.F., "An inherently linear electrostatic feedback method for gravity meter" J. Geophys. Res. 1986 pp. 10,463-10,469 VanRuymbeke, M., 1989. A new feedback system for instruments equipped with a capacitive transducer. In: Proceedings of the 11th International Symposium on Earth Tides, Helsinki. pp. 51–60. Warburton, R.J.; Goodkind, J.M., "The influence of barometric-pressure variations on gravity" Geophys. J. R. Astron. Soc. 1997 pp. 281-292 Wenzel, H.G., "The nanogal software: Earth tide data processing package ETERNA 3.30" Bull. Inf. Mare´es Terrestres 1996 pp. 9425-9439en
dc.description.fulltextpartially_openen
dc.contributor.authorAndò, B.en
dc.contributor.authorCarbone, D.en
dc.contributor.departmentDEES, University of Catania, V.le A.Doria 6, 95125, Catania, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
912 Andò and Carbone.pdf258.96 kBAdobe PDF
Elsevier.html520 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

13
checked on Feb 10, 2021

Page view(s)

116
checked on Apr 24, 2024

Download(s)

79
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric