Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/355
DC FieldValueLanguage
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAiuppa, A.; Dipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.contributor.authorallAllard, P.; Laboratoire Pierre-Sue, CNRS-CEA, CE-Saclay, 91191 Gif-sur-Yvette, Franceen
dc.contributor.authorallBellomo, S.; Dipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.contributor.authorallJean Baptiste, P.; Laboratoire des Sciences du Climat et de l’Environment, Commissariat a` l’E´ nergie Atomique–Centre National de la Recherche Scientifique,en
dc.contributor.authorallParello, F.; Dipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.contributor.authorallValenza, M.; Dipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.date.accessioned2005-08-08T10:01:52Zen
dc.date.available2005-08-08T10:01:52Zen
dc.date.issued2002en
dc.identifier.urihttp://hdl.handle.net/2122/355en
dc.description.abstractWe report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.en
dc.description.sponsorship-European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.en
dc.format.extent1032453 bytesen
dc.format.extent539 bytesen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries6/66(2002)en
dc.subjectisotopesen
dc.subjectwater chemistryen
dc.subjectdissolved gasesen
dc.titleMagma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber963–981en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesAiuppa A., Allard P., D’Alessandro W., Michel A., Parello F., Treuil M., and Valenza M. (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. Aiuppa A., Caleca A., Federico C., Guerrieri S., and Valenza M. (submitted) Diffuse degassing of carbon dioxide at Somma-Vesuvius volcanic complex (southern Italy) and its relation with regional tectonics. J. Geophys. Res. Allard P. (1983) The origin of hydrogen, carbon, sulfur, nitrogen, and rare gases in volcanic exhalations: evidence from isotope geochemistry. In: Forecasting volcanic events (eds. H. Tazieff and J. C. Sabroux), Elsevier, Amsterdam, 337–386. Allard P., Baubron J. V. C., Le Bronec J., Luongo G., Maurenas J. M., Pece R., Robe M. C., Tedesco D., and Zettwoog P. (1988) Geochemical survey of volcanic gas soil emanations and eruption forecasting:The Vesuvius case, Italy. In Proceedings of the Kagoshima International Conference on Volcanoes. Allard P., Jean-Baptiste P., D’Alessandro W., Parello F., Parisi B., and Flehoc C. (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet. Sci. Lett. 148, 501–516. Aprile F. and Ortolani F. (1979) Sulla struttura profonda della Piana Campana. Boll. Soc. Natur. Napoli 88, 243–261. Arno` V., Principe C., Rosi M., Santacroce R., Sbrana A., and Sheridan L. F. (1987) Somma-Vesuvius eruptive history. In Somma Vesuvius (ed. R. Santacroce), Quaderni de la Ricerca Scientifica, CNR 114, 8,53–103. Arnorsson S. (1983) Chemical equilibria in Icelandic geothermal systems—Implications for chemical geothermometry investigations. Geothermics 12, 119–128. Arnorsson S. and Andrésdottir A. (1995) Process controlling the distribution of boron and chlorine in natural waters in Iceland. Geochim. Cosmochim. Acta 59, 4125–4146. Avino R., Celico P., Esposito L., Ghiara M. R., La Gioia P., Pece R.,Piscopo V., and Stanzione D. (1994) Caratteristiche idrogeologiche e idrogeochimiche del sistema Vesuviano. Rapporto interno del CNR-GNV. Ayuso R. A., De Vivo B., Rolandi G., Seal R. R., II, and Paone A. (1998) Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 82, 53–78. Barberi F. and Leoni L. (1980) Metamorphic carbonate ejecta from Vesuvius plinian eruptions: Evidence of the occurrence of shallow magma chambers. Bull. Volcanol. 43, 107–120. Belkin H. E., Kilburn C. R. J., and De Vivo B. (1993) Sampling and major element chemistry of the recent (A.D. 1631–1944) Vesuvius activity. J. Volcanol. Geotherm. Res. 58, 273–290. Bernasconi A., Bruni P., Gorla L., Principe C., and Sbrana A. (1981)Risultati preliminari dell’esplorazione geotermica profonda nell’area vulcanica del Somma-Vesuvio. Rend. Soc. Geol. It. 4, 237–240. Berrino G., Corrado G., and Riccardi U. (1998) Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Vesuvius area. J. Volcanol. Geotherm. Res. 82, 139–150. Bianco F., Castellano M., Milano G., Ventura G., and Vilardo G. (1998) The Somma-Vesuvius stress field induced by regional tectonics: Evidences from seismological and mesostructural data. J. Volcanol. Geotherm. Res. 82, 199–218. Bottinga Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxidegraphite- methane-hydrogen-water vapor. Geochim. Cosmochim. Acta 33, 49–64. Bruno P. P. G., Cippitelli G., and Rapolla A. (1998) Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius,Italy. J. Volcanol. Geotherm. Res. 84, 311–322. Caliro S., Panichi C., and Stanzione D. (1998) Baseline study of the isotopic and chemical composition of waters associated with the Somma-Vesuvius volcanic system. Acta Vulcanol. 10, 19–25. Capasso G. and Inguaggiato S. (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 13, 631–642. Capasso G., Favara R., and Inguaggiato S. (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An interpretative model of fluid circulation. Geochim. Cosmochim. Acta 61, 3425–3440. Carrara E., Iacobucci F., Pinna E., and Rapolla A. (1973) Gravity and magnetic survey of the Campanian volcanic area, S. Italy. Boll. Geof. Teor. Appl. 15, 39–51. Celico P. (1978) Schema idrogeologico dell’Appennino carbonatico centro-meridionale. Mem. Note Ist. Geol. Appl. 14. Celico P. (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centromeridionale (Marche e Lazio meridionali, Abruzzo, Molise e Campania). Quad. Cassa Mezz. 4, 2, 190–194. Celico P., De Gennaro M., Ferreri M., Ghiara M. R., Ruddo D.,Stanzione D., and Zenone F. (1980) Il margine orientale della Piana Campana: Indagini idrogeologiche e geochimiche. Per. Mineral. 49,241–270. Celico P., Stanzione D., Esposito L., Ghiara M. R., Piscopo V., Caliro S., and La Gioia P. (1998) Caratterizzazione idrogeologica e idrogeochimica dell’area Vesuviana. Boll. Soc. Geol. It. 117, 3–20. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Chiodini G., Cioni R., Guidi M., and Marini L. (1991) Chemical geothermometry and geobarometry in hydrothermal solution: A theoretical investigation based on mineral-solution equilibrium model. Geochim. Cosmochim. Acta 55, 2709–2727. Chiodini G., Frondini F., and Ponziani F. (1995) Deep structures and carbon dioxide degassing in central Italy. Geothermics 24, 81–94. Chiodini G., Avino R., Cardellini C., Caliro S., Granieri D., and Russo M. (1999a) Rendiconto sull’attività di sorveglianza, anno 1998. Osservatorio Vesuviano, Napoli. Chiodini G., Frondini F., Kerrick D. M., Parello F., Peruzzi L., and Zanzari A. R. (1999b) Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and soil diffuse degassing. Chem. Geol. 159, 205–222. Chiodini G., Marini L., and Russo M. (2001) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim. Cosmochim. Acta 65, 2129–2147. Civetta L., Innocenti F., Manetti P., Peccerillo A., and Poli G. (1981)Geochemical characteristics of potassic volcanic rocks from Mt. Ernici (southern Latium, Italy). Contrib. Mineral. Petrol. 78, 37–47. COESA (1976) US standard atmosphere. U.S. Government Printing Office, Washington, DC. Corniello A., De Riso R., and Ducci D. (1990) Idrogeologia e idrogeochimica della Piana Campana. Mem. Soc. Geol. It. 45, 351–360. Cortini M. and Hermes O. D. (1981) Sr isotopic evidence for a multi-source origin of the potassic magmas in the Neapolitan area (S. Italy). Contrib. Mineral. Petrol. 77, 47–55. Craig H. (1961) Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834. Craig H. and Lupton J. E. (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369–385. Delibrias G., Di Paola G. M., Rosi M., and Santacroce R. (1979) La storia eruttiva del complesso vulcanico Somma-Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend. Soc. It. Mineral. Petrol. 35, 411–438. Di Maio R., Mauriello P., Patella D., Petrillo Z., Piscitelli S., and Siniscalchi A. (1998) Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82, 219–238. Duchi V., Minissale A., Paolieri M., Prati F., and Vaori A. (1992)Chemical relationship between discharging fluids in the Siena-Radiocofani graben and the deep fluids produced by the geothermal fields of Mt. Amiata, Torre Alfina and Latera (central Italy). Geothermics 21, 401–413. Duchi V., Minissale A., Vaselli O., and Ancillotti M. (1995) Hydrogeochemistry of the Campanian region in southern Italy. J. Volcanol. Geotherm. Res. 67, 313–328. Epstein S. and Mayeda T. (1953) Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224. Favara R., Grassa F., Inguaggiato S., Pecoraino G., and Capasso G. (in press) A simple method to determine the 13C of total dissolved inorganic carbon. Geofisica Internacional. Federico C. (1999) Interaction between magmatic gases and the hydrological system at Vesuvius (southern Italy) during current dormancy: Evidence from water and gas geochemistry. Ph.D. thesis,Università di Palermo. Federico C., Aiuppa A., Favara R., Guerrieri S., and Valenza M. (submitted) The chemical and isotope composition of groundwaters at Vesuvius: time variations (period May 1998–May 2001) and insights on geochemical monitoring strategies. In J. Volcanol. Geotherm. Res. Ferrara G. C. and Stefani G. (1977) CO2 distribution in the atmosphere and noise survey after blow-out in Alfina-1 well, northern Latium, Italy. Geothermics 6, 163–174. Finetti I. and Morelli C. (1974) Esplorazione di sismica a riflessione dei Golfi di Napoli e Pozzuoli. Boll. Geof. Teor. Appl. 16, 175–222. Fournier R. O. (1991) Water geothermometers applied to geothermal energy. In Application of Geochemistry in Geothermal Reservoir Development (ed. F. D’Amore), pp. 37–70. UNITAR/UNDP, Rome, Italy. Fulignati P., Marianelli P., and Sbrana A. (1998) New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol. 10, 47–54. Gat J. R. and Carmi I. (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 75, 3032–3048. Giggenbach W. F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749– 2765. Giggenbach W. F. (1991) Chemical techniques in geothermal exploration. In Application of Geochemistry in Geothermal Reservoir Development (ed. F. D’Amore), pp. 119–144. UNITAR/UNDP,Rome, Italy. Giggenbach W. F. (1992) Isotopic shift in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113, 495–510. Graham D. W., Allard P., Killburn C. R. J., Spera F. J., and Lupton J. E. (1993) Helium isotopes in some historical lavas from Mount Vesuvius. J. Volcanol. Geotherm. Res. 58, 359–366. Gurrieri S., Federico C., Aiuppa A., and Valenza M. (2001) Thermodynamic constraints on WRI processes at Mt Vesuvius, Southern Italy. In Proceedings of the 10th International Symposium on Water-Rock-Interaction (ed. R. Cidu), pp. 843–846. Balkema, Rotterdam,the Netherlands. Hooker P. J., Bertrami R., Lombardi S., O’Nions R. K., and Oxburg E. R. (1985) Helium-3 anomalies and crust mantle interactions in Italy. Geochim. Cosmochim. Acta 49, 2505–2513. Inguaggiato S., Pecoraino G., and D’Amore F. (2000) Chemical and isotopical characterisation of fluid manifestations of Ischia Island, Italy. J. Volcanol. Geotherm. Res. 99, 151–178. Ippolito F., Ortolani F., and Russo M. (1973) Struttura marginale tirrenica dell’Appennino Campano: Reinterpretazione dei dati di antiche ricerche di idrocarburi. Mem. Soc. Geol. Ital. 12, 27–250. Italiano F., Martelli M., Martinelli G., and Nuccio P.M. (2000) Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: Geodynamic and seismologic implications. J. Geophys. Res. 105, 13569–13578. Italiano F., Martelli M., and Nuccio P. M. (2001) Helium geochemistry applied to crust-mantle interaction in the Apennines (Italy). In Proceedings of the 10th International Symposium on Water-Rock-Interaction (ed. R. Cidu), pp. 103–106. Balkema, Rotterdam, the Netherlands. Jean-Baptiste P., Mantisi F., Dapoigny A., and Stievenard M. (1992)Design and performance of a mass spectrometer for measuring helium isotopes in natural waters and for low-level tritium determination by the 3He ingrowth method. Appl. Radiat. Isotop. 43, 881–891. Marini L. and Chiodini G. (1994) The role of carbon dioxide in the carbonate-evaporite geothermal systems of Tuscany and Latium (Italy). Acta Vulcanol. 5, 95–104. Marty B. and Jambon A. (1987) C/3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26. Marty B., Trull T., Lussiez P., Basile I., and Tanguy J. C. (1994) He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. Marzocchi W., Scandone R., and Mulargia F. (1993) The tectonic setting of Mount Vesuvius and the correlation between its eruptions and the earthquakes of the Southern Apennines. J. Volcanol. Geotherm. Res. 58, 27–41. Minissale A. (1991) Thermal springs of Italy: Their relation to recent tectonics. Appl. Geochem. 6, 210–212. Minissale A., Evans W. C., Magro G., and Vaselli O. (1997) Multiple source components in gas manifestations from north-central Italy. Chem. Geol. 142, 175–192. Mook W. G., Bommerson J. C., and Staverman W. H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 2, 169–176. Panichi C. and Tongiorgi E. (1975) Carbon isotope composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: A preliminary prospection method of geothermal area. In Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources, pp. 815–825. U.S. Govt. Printing Press, Washington, D.C. Parello F., Allard P., D’Alessandro W., Federico C., Jean-Baptiste P., and Catani O. (2000) Fluid geochemistry of Pantelleria volcano, Sicily Channel Rift: A mantle volatile end-member for volcanism in southern Europe. Earth Planet. Sci. Lett. 180, 325–339. Parkhurst D. L. (1995) PHREEQC—A computer program for speciation, reaction path, advective transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report 95–4227. Pescatore T. S. and Sgrosso I. (1973) I rapporti tra la piattaforma campano-lucana e la piattaforma abruzzese-campana nel casertano. Boll. Soc. Geol. Ital. 92, 925–938. Pineau F. and Javoy M. (1983) Carbon isotopes and concentrations in mid-oceanic ridge basalts. Earth Planet. Sci. Lett. 62, 239–257. Sano Y., Wakita H., Italiano F., and Nuccio P. M. (1989) Helium isotopes and tectonics in southern Italy. Geophys. Res. Lett. 16, 511–514. Santacroce R. (1983) A general model for the behavior of the Somma-Vesuvius volcanic complex. J. Volcanol. Geotherm. Res. 17, 237–248. Scandone P. (1978) Origin of the Tyrrhenian Sea and Calabrian Arc. Boll. Soc. Geol. It. 98, 27–34. Scandone R., Bellucci F., Lirer L., and Rolandi G. (1991) The structure of the Campanian Plain and the activity of the Neapolitan volcanoes. J. Volcanol. Geotherm. Res. 48, 1–31. Sorey M. L., Kennedy B. M., Evans W. C., Farrar C. D., and Suemnicht G. A. (1993) Helium isotope and gas discharge variations associated with crustal unrest in Long Valley caldera, California, 1989–1992. J. Geophys. Res. 98, 15871–15889. Sorey M. L., Evans W. C., Kennedy B. M., Farrar C. D., Hainsworth L. J., and Hausback B. (1998) Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain,California, USA. J. Geophys. Res. 103, 15303–15323. Taylor H. P., Jr., Giannetti B., and Turi B. (1979) Oxygen isotope geochemistry of the potassic igneous rocks from the Roccamonfina volcano, Roman comagmatic region, Italy. Earth Planet. Sci. Lett. 46, 81–106. Tedesco D., Allard P., Sano Y., Wakita H., and Pece R. (1990)Helium-3 in subaerial and submarine fumaroles of Campi Flegrei caldera, Italy. Geochim. Cosmochim. Acta 54, 1105–1116. Tedesco D., Allard P., Baubron J. C., Maiorani A., and Miele G. (1991)Geochemistry of present-day gas emissions from Vesuvius: Volcanological implications. In Proceedings of the International Conference on Active Volcanoes and Risk Mitigation. Tedesco D., Nagao K., and Scarsi P. (1998) Noble gas isotopic ratios from historical lavas and fumaroles at Mount Vesuvius (southern Italy): Constraints for current and future volcanic activity. Earth Planet. Sci. Lett. 164, 61–78. Trujillo P. E., Galdney E., Counce D., Mroz E. J., Perrin D. R., Owens J. W., and Wangen L. E. (1982) A comparison study for determining dissolved boron in natural waters and geothermal fluids. Anal. Lett.15, A7, 643–655. Trull T. W., Nadeau S., Pineau F., Polve´ M., and Javoy M. (1993)C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth Planet. Sci. Lett. 118, 43–64. Ventura G. and Vilardo G. (1999) Seismic-based estimate of hydraulic parameters at Vesuvius volcano. Geophys. Res. Lett. 26, 7, 887–890. Ventura G., Vilardo G., and Bruno P. P. (1999) The role of flank collapse in modifying the shallow plumbing system of volcanoes: An example from Somma-Vesuvius, Italy. Geophys. Res. Lett. 26,3681–3684. Weiss R. F. (1971) Solubility of helium and neon in water and seawater. J. Chem. Eng. Data 16, 235–241. Whitfield M. (1978) Activity coefficients in natural waters. In Activity Coefficients in Electrolyte Solutions (ed. R. M. Pytkowicz), pp. 153–300. CRC Press, Boca Raton, FL. Zhang J., Quay P. D., and Wilbur D. O. (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59, 107–114. Zollo A., Gasparini P., Virieux J., Biella G., Boschi E., Capuano P., De Franco R., Dell’Aversana P., De Matteis R., De Natale G., Iannaccone G., Guerra I., Le Meur H., and Mirabile L. (1998) An image of Mt. Vesuvius obtained by 2D seismic tomography. J. Volcanol. Geotherm. Res. 82, 161–173.en
dc.description.fulltextpartially_openen
dc.contributor.authorFederico, C.en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorAllard, P.en
dc.contributor.authorBellomo, S.en
dc.contributor.authorJean Baptiste, P.en
dc.contributor.authorParello, F.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.contributor.departmentLaboratoire Pierre-Sue, CNRS-CEA, CE-Saclay, 91191 Gif-sur-Yvette, Franceen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra, Universita` di Palermoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.orcid0000-0001-9133-1937-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Federico et al. Geoch.Cosm. Acta 2002.pdfMain article1.01 MBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s) 10

399
checked on Apr 24, 2024

Download(s)

87
checked on Apr 24, 2024

Google ScholarTM

Check