Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2992
DC FieldValueLanguage
dc.contributor.authorallSulpizio, R.; CIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.authorallBonasia, R.; CIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.authorallDellino, P.; CIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.authorallDi Vito, M. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallLa Volpe, L.; CIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.authorallMele, D.; CIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.authorallZanchetta, G.;  Dipartimento di Scienze della Terra, Pisa, Italyen
dc.contributor.authorallSadori, L.;  Dipartimento di Biologia Vegetale, Università La Sapienza, Roma, Italyen
dc.date.accessioned2007-12-06T14:17:47Zen
dc.date.available2007-12-06T14:17:47Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/2992en
dc.description.abstractAsh samples from tephra layers correlated with the Pomici di Avellino (Avellino Pumice) eruption of Somma-Vesuvius were collected in distal archives and their composition and particle morphology investigated in order to infer their behaviour of transportation and deposition. Differences in composition and particle morphologies were recognised for ash particles belonging to the magmatic Plinian and final phreatomagmatic phases of the eruption. The ash particles were dispersed in opposite directions during the two different phases of the eruption, and these directions are also different from that of coarse-grained fallout deposits. In particular, ash generated during magmatic phase and injected in the atmosphere to form a sustained column shows a prevailing SE dispersion, while ash particles generated during the final phreatomagmatic phase and carried by pyroclastic density currents show a general NW dispersion. These opposite dispersions indicate an ash dispersal influenced by both high and low atmosphere dynamics. In particular, the magmatic ash dispersal was first driven by stratospheric wind towards NE and then the falling particles encountered a variable wind field during their settling, which produced the observed preferential SE dispersal. The wind field encountered by the rising ash clouds that accompanied the pyroclastic density currents of the final phreatomagmatic phase was different with respect to that encountered by the magmatic ash, and produced a NW dispersal. These data demonstrate how ash transportation and deposition are greatly influenced by both high and low atmosphere dynamics. In particular, fine-grained particles transported in ash clouds of small-scale pyroclastic density currents may be dispersed over distances and cover areas comparable with those injected into the stratosphere by Plinian, sustained columns. This is a point not completely addressed by present day mitigation plans in case of renewal of activity at Somma-Vesuvius, and can yield important information also for other volcanoes potentially characterised by explosive activity.en
dc.language.isoEnglishen
dc.publisher.nameelsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.subjectPomici di Avellino eruptionen
dc.subjectash dispersalen
dc.subjectatmosphere dynamicsen
dc.subjectvolcanic hazarden
dc.titleDiscriminating the-long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy).en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberOn line Firsten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.identifier.doi10.1016/j.jvolgeores.2007.11.012en
dc.relation.referencesAndronico, D., Cioni, R., 2002. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards. Bull. Volcanol. 64, 372–391 DOI 10.1007/s00445-002-0215-4 Armienta, M.A., De la Cruz-Reyna, S., Morton, O., Cruz, O., Ceniceros, N.; 2002. Chemical variations of tephra-fall deposit leachates for three eruptions from Popocatepetl volcano. J. Volcanol. Geotherm. Res. 113, 61-80. Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29(14), 1700, doi:10.1029/2002GL015142. Birner, T., 2006: Fine-scale structure of the extratropical tropopause region, J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301. Blong, R.J., 1984. Volcanic hazards. A Sourcebook on the Effects of Eruptions. Academic Press, Sydney. 424 pp. Blong, R., 2003. Building damage in Rabaul, Papua New Guinea, 1994. Bull. Volcanol. 65, 43–54. Blott, S.J. and Pye, K., 2001. GRADISTAT: a grain size distribution and statistic package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms, 26, 1237-1248. Bonadonna, C., Ernst, G.G.J., Sparks, R.S.J., 1998. Thickness variation and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J. Volcanol. Geotherm. Res. 81, 173-187. Bonadonna, C., Phillips, J.C., 2003. Sedimentation from strong volcanic plumes. J. Geophys. Res. 108, B7, 2340, doi:10.1029/2002JB002034, Bonadonna, C., Phillips, J.C., Houghton, B.F., 2005. Modelling tephra sedimentation from a Ruapehu weak plume eruption. J. Geophys. Res. 110, B08209, doi:10.1029/2004JB003515. Buttner, R., Dellino, P., Zimanowski, B., 1999. Identifying modes of magma/water interaction from the surface features of ash particles. Nature, 401, 688– 690. Buttner, R., Dellino, P., Raue, H., Sonder, I., Zimanowski, B., 2006. Stress-induced brittle fragmentation of magmatic melts: Theory and experiments. J. Geophys. Res., 111, B08204, doi:10.1029/2005JB003958, Calanchi, N., Dinelli, E., Lucchini, F., Mordenti, A., 1996. Chemostratigraphy of the Late Quaternary sediments from Lake Albano and Central Adriatic Sea cores (PALICLAS project). Mem. Ist. Ital. Idrobiol. 55, 247-263. Calanchi, N., Cattaneo, A., Dinelli, E., Gasparotto, G., Lucchini, F., 1998. Tephra layers in Late Quaternary sediments of the central Adriatic Sea. Marine Geology 149, 191–209. Calanchi, N., Dinelli, E., 2007. Tephrostratigraphy for the last 170 ka in sedimentary successions from the Adriatic sea. J. Volcanol. Geotherm. Res., this volume. Carey, S., Sparks, R.S.J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 48, 109-125. Cas, R., Wright, J.W., 1987. Volcanic Successions: Modern and Ancient. Allen and Unwin, London, 528 pp. Chondrogianni C., Ariztegui, D., Bernasconi, S.M., Lafargue, E., McKenzie, J.A., 1996. Geochemical indicators tracing ecosystem response to climate change during the late Pleistocene (Lake Albano, central Italy). Mem. Ist ital. Idrobiol. 55, 99-110. Cioni, R., Levi, S., Sulpizio, R., 2000. Apulian Bronze Age pottery as a long-distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In: Mc Guire W.G., Griffiths D.R., Hancock P.L., Stewart I.S. (eds) The Archaeology of Geological chatastrophes. Geological Society, London, Special Publications, 171, 159-177 Cioni, R., Longo, A., Macedonio, G., Santacroce, R., Sbrana, A., Sulpizio, R., Andronico, D., 2003. Assessing pyroclastic fall hazard through field data and numerical simulations: the example from Vesuvius. J. Gephys. Res. 108, doi:10.1029/2001JB000642. Costa, A., Dell’Erba, F., Di Vito, M., Isaia, R., Macedonio, G., Orsi, G., Pfeiffer, T., 2007. Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull. Volc., under revision. Dade, B.W., Huppert, H.E., 1996. Emplacement of the Taupo Ignimbrite by a dilute turbulent flow. Nature. 381, 509–512. Dahlgren, R. A., Ugolini, F.C., Casey, W. H., 1999. Field weathering rates of Mt. St. Helens tephra. Geoch. Cosmoch. Acta. 63, 587–598. Dellino, P., La Volpe, L., 1995. Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato Rocche Rosse (Lipari, Italy). J. Volcanol. Geotherm. Res., 64, 211–231. Dellino, P., Mele, D., Bonaria, R., Braia, G., La Volpe, L., Sulpizio, R., 2005. The aerodynamics of pumice. Geophys. Res. Lett. 32, L21306, doi:10.1029/2005GL023954. Di Renzo, V., Di Vito, M.A., Arienzo, I., Carandente, A., Civetta, L., D’Antonio, M., Giordano, F., Orsi, G., Tonarini, S., 2007. Magmatic history of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J. Petrol., 48, 753-784. Di Vito, M.A., Sulpizio, R., Zanchetta, G., D’Orazio, M., 2007. The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J. Volcanol. Geotherm. Res., this volume. Drescher-Schneider, R., De Beaulieu, J.L, Magny, M., Walter-Simonnet, A.V., Bossuet, G., Millet, L., Brugiapaglia, E., Drescher, A., 2006. Vegetation history, climate and human impact over the last 15 000 years at Lago dell’Accesa (Tuscany, Central Italy). Veget. Hist. Archaeobot. DOI 10.1007/s00334-006-0089-z Favalli, M., Pareschi, M. T., Zanchetta, G., 2006. Simulation of syn-eruptive floods in the circumvesuvian plain (southern Italy). Bull. Volcanol., 68, 349–362. Fisher, R.V., Schmincke, H.U., 1984. Pyroclastic rocks. Springer-Verlag, Berlin, 472 pp. Haekel, M., van Beusekom, J., Wiesner, M.G., Konig, I., 2001. The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea. Earth Plan. Sc. Lett. 193, 151-166. Horwell, C.J., Sparks, R.S.J., Brewer, T.S., Llewellin, E.W., Williamson B.J., 2003. Characterization of respirable volcanic ash from the Soufriére Hills volcano, Montserrat, with implications for human health hazards. Bull. Volcanol. 65: 346–362. Horwell, C.J., Baxter, P.J., 2006. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull. Volcanol., 69, 1–24, DOI 10.1007/s00445-006-0052-y Lirer, L., Pescatore, T., Booth, P., Walker, J.P.L., 1973. Two Plinian pumice fall deposits from Somma–Vesuvius, Italy. GSA Bulletin, 84, 759–772. Langone, L.A., Asioli, A., Correggiari, A., Trincardi, F., 1996. Age-depth modelling through the late Quaternary deposits of the central Adriatic basin. Mem. Ist. Ital. Idrobiol. 55, 177-196. Lowe, J.J., Blockley, S., Trincardi, F., Asioli, A., Cattaneo, A., Matthews, I.P., Pollard, M., Wulf, S., 2007. Age modelling of late Quaternary marine sequences in the Adriatic: towards improved precision and accuracy using volcanic event stratigraphy. Cont. Shelf Res., 27, 560–582. Magny, M., de Beaulieu, J.L., Drescher-Schneider, R., Vanniére, B., Walter-Simonnet, A.V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., Leroux, A., 2007. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat. Sc. Rev., 26, 1736–1758. Marianelli, P., Sbrana, A., 1998. Risultati di misure di standard di minerali e di vetri naturali in microanalisi a dispersione di energia. Atti Soc. Tosc. Sc. Nat. Mem., Serie A, 105, 57-63. Pantosti, D., Schwartz, D.P., Valenzise, G., 1993. Paleoseismology along the 1980 rupture of the Irpinia fault. J. Geophys. Res., B4 98, 6561-6577. Pyle, D.M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol., 51, 1-15. Ramrath, A., Zolitschka, B., Wulf, S., Negendank, J.F.W., 1999. Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). Quat. Sc. Rev., 18, 977-992. Rolandi, G., Petrosino, P., McGeehin, J., 1998. The interplinian activity at Somma-Vesuvius in the last 3,500 years. J. Volcanol. Geotherm. Res., 82, 19–52. Santacroce, R. (ed.), 1987. Somma-Vesuvius, Quaderni de la Ricerca Scientifica, CNR, 114, Progetto Finalizzato Geodinamica, Monografie Finali, 8. Santacroce, R., Andronico, D., Cavarra, L., Cioni, R., Favalli, M., Longo, A., Macedonio, G., Pareschi, M.T., Sbrana, A, Sulpizio, R., Zanchetta, G., 1998. Updating the scenario of the mid-term maximum expected eruption of Vesuvius. Proceedings of Cities on Volcanoes International meeting. Rome and Naples, June 28- July 4, 1998, 119. Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J., 2007. Chronology and composition of Vesuvius pyroclasts: a tool for distal tephrostratigraphy. J. Volcanol. Geoth. Res., this volume. Scollo, S., Del Carlo, P., Coltelli, M., 2007. Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J. Volcanol. Geotherm. Res., 160, 147–164. Siani G., Sulpizio R., Paterne M., Sbrana, A., 2004. Tephrostratigraphy study for the last 18,000 14C years in a deep-sea sediment sequence for the South Adriatic. Quat. Sc. Rev. 23, 2485-2500. Son, S.W., Polvani, L.M., 2007. Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34, L17806, doi: 10.1029/2007GL030564 Stewart, C., Johnston, D.M., Leonard, G.S., Horwell, C.J., Thordarson, T., Cronin, S.J., 2006. Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling. J. Volcanol. Geoth. Res., 158, 296-306. Sulpizio, R., 2005. Three empirical methods for the calculation of distal volume of tephra-fall deposits. J. Volcanol. Geoth. Res. 145, 315-336. Sulpizio, R., Mele, D., Dellino, P., La Volpe, L., 2005. A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius (Italy). Bull. Volcanol. DOI 10-1007/s00445-005-0414-x. Walker, G.P.L., 1973. Explosive volcanic eruptions—a new classification scheme. Geol. Rundsch. 62, 431–446. Wilson, L., Sparks, R.S.J., Walker, G.P.L., 1980. Explosive volcanic eruptions-IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc., 63, 117-148. Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions-IV. Ejecta dispersal in Plinian eruptions. The control of eruption conditions and atmospheric properties. Geophys. J. R. Astron. Soc., 89, 657-679. Witham, C.S., Oppenheimer, C., Horwell, C.J., 2005. Volcanic ash-leachates: a review and recommendations for sampling methods. J. Volcanol. Geotherm. Res., 141, 299–326. Wulf, S., Kraml, M., Brauer, A., Keller, J., Negendank, J.F.W., 2004. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat. Int., 122, 7–30. Waitt, R.B., Hansen, V.L., Sarna-Wojcicki, A., Wood, S.H.,1981. Proximal air-fall deposits of eruptions between May 24 and August 7, 1980 – Stratigraphy and field sedimentology. U.S. Geol. Surv. Prof. Pap. 1250, 577-600. Zanchetta, G., Sulpizio, R., Di Vito, M.A., 2004. The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from southern Campania (Italy). Sedim. Geol. 168, 249-260. Zimanowski, B., Wohletz, K., Dellino, P., Buttner, R., 2001. The volcanic ash problem. J. Volcanol. Geotherm. Res., 122, 1-5.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei sistemi vulcanicien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorSulpizio, R.en
dc.contributor.authorBonasia, R.en
dc.contributor.authorDellino, P.en
dc.contributor.authorDi Vito, M. A.en
dc.contributor.authorLa Volpe, L.en
dc.contributor.authorMele, D.en
dc.contributor.authorZanchetta, G.en
dc.contributor.authorSadori, L.en
dc.contributor.departmentCIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.departmentCIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.departmentCIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentCIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.departmentCIRISIVU, c/o Dipartimento Geomineralogico, Bari, Italyen
dc.contributor.department Dipartimento di Scienze della Terra, Pisa, Italyen
dc.contributor.department Dipartimento di Biologia Vegetale, Università La Sapienza, Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCIRISIVU, c/o Dipartimento Geomineralogico, Universita' di Bari-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-3930-5421-
crisitem.author.orcid0000-0001-6927-4905-
crisitem.author.orcid0000-0002-7913-9149-
crisitem.author.orcid0000-0002-8935-335X-
crisitem.author.orcid0000-0002-7080-9599-
crisitem.author.orcid0000-0002-2774-6705-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
SulBon-2007.pdf2.49 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

70
checked on Feb 10, 2021

Page view(s) 50

245
checked on Apr 24, 2024

Download(s) 10

676
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric